4,409 research outputs found
AMBER/VLTI observations of the B[e] star MWC 300
Aims. We study the enigmatic B[e] star MWC 300 to investigate its disk and
binary with milli-arcsecond-scale angular resolution. Methods. We observed MWC
300 with the VLTI/AMBER instrument in the H and K bands and compared these
observations with temperature-gradient models to derive model parameters.
Results. The measured low visibility values, wavelength dependence of the
visibilities, and wavelength dependence of the closure phase directly suggest
that MWC 300 consists of a resolved disk and a close binary. We present a model
consisting of a binary and a temperature-gradient disk that is able to
reproduce the visibilities, closure phases, and spectral energy distribution.
This model allows us to constrain the projected binary separation (~4.4 mas or
~7.9 AU), the flux ratio of the binary components (~2.2), the disk temperature
power-law index, and other parameters.Comment: 4 pages, 1 figure, accepted by A&
A Dimension-Adaptive Multi-Index Monte Carlo Method Applied to a Model of a Heat Exchanger
We present an adaptive version of the Multi-Index Monte Carlo method,
introduced by Haji-Ali, Nobile and Tempone (2016), for simulating PDEs with
coefficients that are random fields. A classical technique for sampling from
these random fields is the Karhunen-Lo\`eve expansion. Our adaptive algorithm
is based on the adaptive algorithm used in sparse grid cubature as introduced
by Gerstner and Griebel (2003), and automatically chooses the number of terms
needed in this expansion, as well as the required spatial discretizations of
the PDE model. We apply the method to a simplified model of a heat exchanger
with random insulator material, where the stochastic characteristics are
modeled as a lognormal random field, and we show consistent computational
savings
First results from VLTI near-infrared interferometry on high-mass young stellar objects
This is the author accepted manuscript. The final version is available from SPIE via the DOI in this record.Due to the recent dramatic technological advances, infrared interferometry can now be applied to new classes of objects, resulting in exciting new science prospects, for instance, in the area of high-mass star formation. Although extensively studied at various wavelengths, the process through which massive stars form is still only poorly understood. For instance, it has been proposed that massive stars might form like low-mass stars by mass accretion through a circumstellar disk/envelope, or otherwise by coalescence in a dense stellar cluster. Therefore, clear observational evidence, such as the detection of disks around high-mass young stellar objects (YSOs), is urgently needed in order to unambiguously identify the formation mode of the most massive stars. After discussing the technological challenges which result from the special properties of these objects, we present first near-infrared interferometric observations, which we obtained on the massive YSO IRAS 13481-6124 using VLTI/AMBER infrared long-baseline interferometry and NTT speckle interferometry. From our extensive data set, we reconstruct a model-independent aperture synthesis image which shows an elongated structure with a size of ~ 13 x 19 AU, consistent with a disk seen under an inclination of - 45°. The measured wavelengthdependent visibilities and closure phases allow us to derive the radial disk temperature gradient and to detect a dust-free region inside of 9.5 AU from the star, revealing qualitative and quantitative similarities with the disks observed in low-mass star formation. In complementary mid-infrared Spitzer and sub-millimeter APEX imaging observations we detect two bow shocks and a molecular outflow, which are oriented perpendicular to the disk plane and indicate the presence of a bipolar outflow emanating from the inner regions of the system.This work was performed in part under contract with the California Institute of Technology (Caltech) funded by
NASA through the Sagan Fellowship Program
Generic and Layered Framework Components for the Control of a Large Scale Data Acquisition System
The complexity of today's experiments in High Energy Physics results in a large amount of readout channels which can count up to a million and above. The experiments in general consist of various subsystems which themselves comprise a large amount of detectors requiring sophisticated DAQ and readout electronics. We report here on the structured software layers to control such a data acquisition system for the case of LHCb which is one of the four experiments for LHC. Additional focus is given on the protocols in use as well as the required hardware. An abstraction layer was implemented to allow access on the different and distinct hardware types in a coherent and generic manner. The hierarchical structure which allows propagating commands down to the subsystems is explained. Via finite state machines an expert system with auto-recovery abilities can be modeled
A hot compact dust disk around a massive young stellar object
This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.Circumstellar disks are an essential ingredient of the formation of low-mass stars. It is unclear, however, whether the accretion-disk paradigm can also account for the formation of stars more massive than about 10 solar masses, in which strong radiation pressure might halt mass infall. Massive stars may form by stellar merging, although more recent theoretical investigations suggest that the radiative-pressure limit may be overcome by considering more complex, non-spherical infall geometries. Clear observational evidence, such as the detection of compact dusty disks around massive young stellar objects, is needed to identify unambiguously the formation mode of the most massive stars. Here we report near-infrared interferometric observations that spatially resolve the astronomical-unit-scale distribution of hot material around a high-mass ( approximately 20 solar masses) young stellar object. The image shows an elongated structure with a size of approximately 13 x 19 astronomical units, consistent with a disk seen at an inclination angle of approximately 45 degrees . Using geometric and detailed physical models, we found a radial temperature gradient in the disk, with a dust-free region less than 9.5 astronomical units from the star, qualitatively and quantitatively similar to the disks observed in low-mass star formation. Perpendicular to the disk plane we observed a molecular outflow and two bow shocks, indicating that a bipolar outflow emanates from the inner regions of the system.This work was done in part under contract with the California Institute of Technology (Caltech), funded by NASA through the Sagan Fellowship Program (S.K. is a Sagan Fellow). We thank the ESO Paranal staff for support and their efforts in improving the VLTI. This paper is based on observations made with ESO telescopes at the La Silla Paranal Observatory and archival data obtained with the Spitzer Space Telescope, operated by the Jet Propulsion Laboratory, Caltech, under a contract with NASA. We also used data acquired with APEX, a collaboration between the Max-Planck-Institut für Radioastronomie, ESO, and the Onsala Space Observatory
"Outside, it is snowing": Experience and finitude in the nonrepresentational landscapes of Alain Robbe-Grillet
Copyright © 2008 PionRomanillos J L, 2008. The definitive, peer-reviewed and edited version of this article is published in Environment and Planning D: Society and Space 26(5) 795 – 822 DOI: 10.1068/d6207This paper presents and explicates the anonymous and impersonal spatialities tentatively mapped in the novels of Alain Robbe-Grillet. Emerging from the kinds of landscapes and visualities articulated, these spatialities are at odds with the kind of anthropocentrism characteristic of phenomenological narratives of spatial experience that would start from an apparently stable human-subject position. It is argued that his body of literature dismantles the anthropocentric narratives and biographies that would produce in both the space of the world and the ‘phenomenological subject’ an unwarranted depth and naturalism. Importantly, and reflecting the theoretical turn towards the being of language, Robbe-Grillet questions the legitimacy of linguistic subjects to capture the spaces of the visible. As such, it is argued that his literature reflects an experience of the critiques of phenomenology. Importantly, this ‘critique’ goes hand in hand with the kinds of spatialities and landscapes that are rendered in the novels—the indefinite perspectives they open up, the paradoxical visualities they sustain or deny, and the disorientation they inject into the heart of spatial experience. These literary effects produce a nonanthropocentric and nonpersonal spatiality which, although contributing to an erasure of the ‘subject’, at the same time expose and open up a sociospatiality based on singularities, intensities, and finitude
First AMBER/VLTI observations of hot massive stars
AMBER is the first near infrared focal instrument of the VLTI. It combines
three telescopes and produces spectrally resolved interferometric measures.
This paper discusses some preliminary results of the first scientific
observations of AMBER with three Unit Telescopes at medium (1500) and high
(12000) spectral resolution. We derive a first set of constraints on the
structure of the circumstellar material around the Wolf Rayet Gamma2 Velorum
and the LBV Eta Carinae
Heavy-flavour and quarkonium production in the LHC era: from proton-proton to heavy-ion collisions
This report reviews the study of open heavy-flavour and quarkonium production
in high-energy hadronic collisions, as tools to investigate fundamental aspects
of Quantum Chromodynamics, from the proton and nucleus structure at high energy
to deconfinement and the properties of the Quark-Gluon Plasma. Emphasis is
given to the lessons learnt from LHC Run 1 results, which are reviewed in a
global picture with the results from SPS and RHIC at lower energies, as well as
to the questions to be addressed in the future. The report covers heavy flavour
and quarkonium production in proton-proton, proton-nucleus and nucleus-nucleus
collisions. This includes discussion of the effects of hot and cold strongly
interacting matter, quarkonium photo-production in nucleus-nucleus collisions
and perspectives on the study of heavy flavour and quarkonium with upgrades of
existing experiments and new experiments. The report results from the activity
of the SaporeGravis network of the I3 Hadron Physics programme of the European
Union 7th Framework Programme
Near-infrared interferometric observation of the Herbig Ae star HD144432 with VLTI/AMBER
We study the sub-AU-scale circumstellar environment of the Herbig Ae star
HD144432 with near-infrared (NIR) VLTI/AMBER observations to investigate the
structure of its inner dust disk. The interferometric observations were carried
out with the AMBER instrument in the H and K band. We interpret the measured H-
and K-band visibilities, the near- and mid-infrared visibilities from the
literature, and the SED of HD144432 by using geometric ring models and
ring-shaped temperature-gradient disk models with power-law temperature
distributions. We derived a K-band ring-fit radius of 0.17 \pm 0.01 AU and an
H-band radius of 0.18 \pm 0.01 AU (for a distance of 145 pc). This measured
K-band radius of \sim0.17 AU lies in the range between the dust sublimation
radius of \sim0.13 AU (predicted for a dust sublimation temperature of 1500 K
and gray dust) and the prediction of models including backwarming (\sim0.27
AU). We found that an additional extended halo component is required in both
the geometric and temperature-gradient modeling. In the best temperature-
gradient model, the disk consists of two components. The inner part of the disk
is a thin ring with an inner radius of \sim0.21 AU, a temperature of \sim1600
K, and a ring thickness \sim0.02 AU. The outer part extends from \sim1 AU to
\sim10 AU with an inner temperature of \sim400 K. We find that the disk is
nearly face-on with an inclination angle of < 28 degree. Our
temperature-gradient modeling suggests that the NIR excess is dominated by
emission from a narrow, bright rim located at the dust sublimation radius,
while an extended halo component contributes \sim6% to the total flux at 2
{\mu}m. The MIR model emission has a two-component structure with \sim20% flux
from the inner ring and the rest from the outer part. This two-component
structure suggests a disk gap, which is possibly caused by the shadow of a
puffed-up inner rim.Comment: 7 pages, 5 figures, accepted by A&
- …
