686 research outputs found
AMBER on the VLTI: data processing and calibration issues
We present here the current performances of the AMBER / VLTI instrument for
standard use and compare these with the offered modes of the instrument. We
show that the instrument is able to reach its specified precision only for
medium and high spectral resolution modes, differential observables and bright
objects. For absolute observables, the current achievable accuracy is strongly
limited by the vibrations of the Unit Telescopes, and also by the observing
procedure which does not take into account the night-long transfer function
monitoring. For low-resolution mode, the current limitation is more in the data
reduction side, since several effects negligible at medium spectral resolution
are not taken into account in the current pipeline. Finally, for faint objects
(SNR around 1 per spectral channel), electromagnetic interferences in the VLTI
interferometric laboratory with the detector electronics prevents currently to
get unbiased measurements. Ideas are under study to correct in the data
processing side this effect, but a hardware fix should be investigated
seriously since it limits seriously the effective limiting magnitude of the
instrument.Comment: 10 page
High spectral resolution imaging of the dynamical atmosphere of the red supergiant Antares in the CO first overtone lines with VLTI/AMBER
We present high spectral resolution aperture-synthesis imaging of the red
supergiant Antares (alpha Sco) in individual CO first overtone lines with
VLTI/AMBER. The reconstructed images reveal that the star appears differently
in the blue wing, line center, and red wing and shows an asymmetrically
extended component. The appearance of the star within the CO lines changes
drastically within one year, implying a significant change in the velocity
field in the atmosphere. Our modeling suggests an outer atmosphere (MOLsphere)
extending to 1.2--1.4 stellar radii with CO column densities of
(0.5--1)x10^{20} cm^{-2} and a temperature of ~2000 K. While the velocity field
in 2009 is characterized by strong upwelling motions at 20--30 km/s, it changed
to strong downdrafts in 2010. On the other hand, the AMBER data in the
continuum show only a slight deviation from limb-darkened disks and only
marginal time variations. We derive a limb-darkened disk diameter of
37.38+/-0.06 mas and a power-law-type limb-darkening parameter of
(8.7+/-1.6)x10^{-2} (2009) and 37.31+/-0.09 mas and (1.5+/-0.2)x10^{-1} (2010).
We also obtain Teff = 3660+/-120 K and log L/Lsun = 4.88+/-0.23, which suggests
a mass of 15+/-5 Msun with an age of 11-15 Myr. This age is consistent with the
recently estimated age for the Upper Scorpius OB association. The properties of
the outer atmosphere of Antares are similar to those of another well-studied
red supergiant, Betelgeuse. The density of the extended outer atmosphere of
Antares and Betelgeuse is higher than predicted by the current 3-D convection
simulations by at least six orders of magnitude, implying that convection alone
cannot explain the formation of the extended outer atmosphere.Comment: 18 pages, 16 figures, accepted for publication in Astronomy and
Astrophysics, short discussion on the age of Antares and the Upper Scorpius
OB association added, movies of the reconstructed images available at
http://www.mpifr-bonn.mpg.de/staff/kohnaka
AMBER/VLTI observations of the B[e] star MWC 300
Aims. We study the enigmatic B[e] star MWC 300 to investigate its disk and
binary with milli-arcsecond-scale angular resolution. Methods. We observed MWC
300 with the VLTI/AMBER instrument in the H and K bands and compared these
observations with temperature-gradient models to derive model parameters.
Results. The measured low visibility values, wavelength dependence of the
visibilities, and wavelength dependence of the closure phase directly suggest
that MWC 300 consists of a resolved disk and a close binary. We present a model
consisting of a binary and a temperature-gradient disk that is able to
reproduce the visibilities, closure phases, and spectral energy distribution.
This model allows us to constrain the projected binary separation (~4.4 mas or
~7.9 AU), the flux ratio of the binary components (~2.2), the disk temperature
power-law index, and other parameters.Comment: 4 pages, 1 figure, accepted by A&
Apodized Lyot Coronagraph for VLT-SPHERE: Laboratory tests and performances of a first prototype in the visible
We present some of the High Dynamic Range Imaging activities developed around
the coronagraphic test-bench of the Laboratoire A. H. Fizeau (Nice). They
concern research and development of an Apodized Lyot Coronagraph (ALC) for the
VLT-SPHERE instrument and experimental results from our testbed working in the
visible domain. We determined by numerical simulations the specifications of
the apodizing filter and searched the best technological process to manufacture
it. We present the results of the experimental tests on the first apodizer
prototype in the visible and the resulting ALC nulling performances. The tests
concern particularly the apodizer characterization (average transmission radial
profile, global reflectivity and transmittivity in the visible), ALC nulling
performances compared with expectations, sensitivity of the ALC performances to
misalignments of its components
Parasitic Interference in Long Baseline Optical Interferometry: Requirements for Hot Jupiter-like Planet Detection
International audienceThe observable quantities in optical interferometry, which are the modulus and the phase of the complex visibility, may be corrupted by parasitic fringes superimposed on the genuine fringe pattern. These fringes are due to an interference phenomenon occurring from stray light effects inside an interferometric instrument. We developed an analytical approach to better understand this phenomenon when stray light causes cross talk between beams. We deduced that the parasitic interference significantly affects the interferometric phase and thus the associated observables including the differential phase and the closure phase. The amount of parasitic flux coupled to the piston between beams appears to be very influential in this degradation. For instance, considering a point-like source and a piston ranging from λ/500 to λ/5 in the L band (λ = 3.5 μm), a parasitic flux of about 1% of the total flux produces a parasitic phase reaching at most one-third of the intrinsic phase. The piston, which can have different origins (instrumental stability, atmospheric perturbations, etc.), thus amplifies the effect of parasitic interference. According to the specifications of piston correction in space or at ground level (respectively λ/500 ≈ 2 nm and λ/30 ≈ 100 nm), the detection of hot Jupiter-like planets, one of the most challenging aims for current ground-based interferometers, limits parasitic radiation to about 5% of the incident intensity. This was evaluated by considering different types of hot Jupiter synthetic spectra. Otherwise, if no fringe tracking is used, the detection of a typical hot Jupiter-like system with a solar-like star would admit a maximum level of parasitic intensity of 0.01% for piston errors equal to λ/15. If the fringe tracking specifications are not precisely observed, it thus appears that the allowed level of parasitic intensity dramatically decreases and may prevent the detection. In parallel, the calibration of the parasitic phase by a reference star, at this accuracy level, seems very difficult. Moreover, since parasitic phase is an object-dependent quantity, the use of a hypothetical phase abacus, directly giving the parasitic phase from a given parasitic flux level, is also impossible. Some instrumental solutions, implemented at the instrument design stage for limiting or preventing this parasitic interference, appear to be crucial and are presented in this paper
First results from VLTI near-infrared interferometry on high-mass young stellar objects
This is the author accepted manuscript. The final version is available from SPIE via the DOI in this record.Due to the recent dramatic technological advances, infrared interferometry can now be applied to new classes of objects, resulting in exciting new science prospects, for instance, in the area of high-mass star formation. Although extensively studied at various wavelengths, the process through which massive stars form is still only poorly understood. For instance, it has been proposed that massive stars might form like low-mass stars by mass accretion through a circumstellar disk/envelope, or otherwise by coalescence in a dense stellar cluster. Therefore, clear observational evidence, such as the detection of disks around high-mass young stellar objects (YSOs), is urgently needed in order to unambiguously identify the formation mode of the most massive stars. After discussing the technological challenges which result from the special properties of these objects, we present first near-infrared interferometric observations, which we obtained on the massive YSO IRAS 13481-6124 using VLTI/AMBER infrared long-baseline interferometry and NTT speckle interferometry. From our extensive data set, we reconstruct a model-independent aperture synthesis image which shows an elongated structure with a size of ~ 13 x 19 AU, consistent with a disk seen under an inclination of - 45°. The measured wavelengthdependent visibilities and closure phases allow us to derive the radial disk temperature gradient and to detect a dust-free region inside of 9.5 AU from the star, revealing qualitative and quantitative similarities with the disks observed in low-mass star formation. In complementary mid-infrared Spitzer and sub-millimeter APEX imaging observations we detect two bow shocks and a molecular outflow, which are oriented perpendicular to the disk plane and indicate the presence of a bipolar outflow emanating from the inner regions of the system.This work was performed in part under contract with the California Institute of Technology (Caltech) funded by
NASA through the Sagan Fellowship Program
A hot compact dust disk around a massive young stellar object
This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.Circumstellar disks are an essential ingredient of the formation of low-mass stars. It is unclear, however, whether the accretion-disk paradigm can also account for the formation of stars more massive than about 10 solar masses, in which strong radiation pressure might halt mass infall. Massive stars may form by stellar merging, although more recent theoretical investigations suggest that the radiative-pressure limit may be overcome by considering more complex, non-spherical infall geometries. Clear observational evidence, such as the detection of compact dusty disks around massive young stellar objects, is needed to identify unambiguously the formation mode of the most massive stars. Here we report near-infrared interferometric observations that spatially resolve the astronomical-unit-scale distribution of hot material around a high-mass ( approximately 20 solar masses) young stellar object. The image shows an elongated structure with a size of approximately 13 x 19 astronomical units, consistent with a disk seen at an inclination angle of approximately 45 degrees . Using geometric and detailed physical models, we found a radial temperature gradient in the disk, with a dust-free region less than 9.5 astronomical units from the star, qualitatively and quantitatively similar to the disks observed in low-mass star formation. Perpendicular to the disk plane we observed a molecular outflow and two bow shocks, indicating that a bipolar outflow emanates from the inner regions of the system.This work was done in part under contract with the California Institute of Technology (Caltech), funded by NASA through the Sagan Fellowship Program (S.K. is a Sagan Fellow). We thank the ESO Paranal staff for support and their efforts in improving the VLTI. This paper is based on observations made with ESO telescopes at the La Silla Paranal Observatory and archival data obtained with the Spitzer Space Telescope, operated by the Jet Propulsion Laboratory, Caltech, under a contract with NASA. We also used data acquired with APEX, a collaboration between the Max-Planck-Institut für Radioastronomie, ESO, and the Onsala Space Observatory
Strong near-infrared emission in the sub-AU disk of the Herbig Ae star HD 163296: evidence of refractory dust?
This is the author accepted manuscript. The final version is available from EDP Sciences via the DOI in this record.We present new long-baseline spectro-interferometric observations of the Herbig Ae star HD 163296 (MWC 275) obtained in the
H and K bands with the AMBER instrument at the VLTI. The observations cover a range of spatial resolutions between ∼3 and
∼12 milliarcseconds, with a spectral resolution of ∼30. With a total of 1481 visibilities and 432 closure phases, they represent the
most comprehensive (u, v) coverage achieved so far for a young star. The circumstellar material is resolved at the sub-AU spatial scale
and closure phase measurements indicate a small but significant deviation from point-symmetry. We discuss the results assuming that
the near-infrared excess in HD 163296 is dominated by the emission of a circumstellar disk. A successful fit to the spectral energy
distribution, near-infrared visibilities and closure phases is found with a model in which a dominant contribution to the H and K band
emission originates in an optically thin, smooth and point-symmetric region extending from about 0.1 to 0.45 AU. At a distance of
0.45 AU from the star, silicates condense, the disk becomes optically thick and develops a puffed-up rim, whose skewed emission can
account for the non-zero closure phases. We discuss the source of the inner disk emission and tentatively exclude dense molecular gas
as well as optically thin atomic or ionized gas as its possible origin. We propose instead that the smooth inner emission is produced by
very refractory grains in a partially cleared region, extending to at least ∼0.5 AU. If so, we may be observing the disk of HD 163296
just before it reaches the transition disk phase. However, we note that the nature of the refractory grains or, in fact, even the possibility
of any grain surviving at the very high temperatures we require (∼2100−2300 K at 0.1 AU from the star) is unclear and should be
investigated further.We acknowledge fundings from CNRS and INAF (grant
ASI-INAF I/016/07/0). This work was in part performed under contract with
the Jet Propulsion Laboratory (JPL) funded by NASA through the Michelson
Fellowship Progra
Study of the atmospheric refraction in a single mode instrument - Application to AMBER/VLTI
International audienceThis paper presents a study of the atmospheric refraction and its effect on the light coupling efficiency in an instrument using single-mode optical fibers. We show the analytical approach which allowed us to assess the need to correct the refraction in J- and H-bands while observing with an 8-m Unit Telescope. We then developed numerical simulations to go further in calculations. The hypotheses on the instrumental characteristics are those of AMBER (Astronomical Multi BEam combineR), the near infrared focal beam combiner of the Very Large Telescope Interferometric mode (VLTI), but most of the conclusions can be generalized to other single-mode instruments. We used the software package caos (Code for Adaptive Optics Systems) to take into account the atmospheric turbulence effect after correction by the ESO system MACAO (Multi-Application Curvature Adaptive Optics). The opto-mechanical study and design of the system correcting the atmospheric refraction on AMBER is then detailed. We showed that the atmospheric refraction becomes predominant over the atmospheric turbulence for some zenith angles z and spectral conditions: for z larger than 30° in J-band for example. The study of the optical system showed that it allows to achieve the required instrumental performance in terms of throughput in J- and H-bands. First observations in J-band of a bright star, alpha Cir star, at more than 30° from zenith clearly showed the gain to control the atmospheric refraction in a single mode instrument, and validated the operating law
Near-infrared interferometric observation of the Herbig Ae star HD144432 with VLTI/AMBER
We study the sub-AU-scale circumstellar environment of the Herbig Ae star
HD144432 with near-infrared (NIR) VLTI/AMBER observations to investigate the
structure of its inner dust disk. The interferometric observations were carried
out with the AMBER instrument in the H and K band. We interpret the measured H-
and K-band visibilities, the near- and mid-infrared visibilities from the
literature, and the SED of HD144432 by using geometric ring models and
ring-shaped temperature-gradient disk models with power-law temperature
distributions. We derived a K-band ring-fit radius of 0.17 \pm 0.01 AU and an
H-band radius of 0.18 \pm 0.01 AU (for a distance of 145 pc). This measured
K-band radius of \sim0.17 AU lies in the range between the dust sublimation
radius of \sim0.13 AU (predicted for a dust sublimation temperature of 1500 K
and gray dust) and the prediction of models including backwarming (\sim0.27
AU). We found that an additional extended halo component is required in both
the geometric and temperature-gradient modeling. In the best temperature-
gradient model, the disk consists of two components. The inner part of the disk
is a thin ring with an inner radius of \sim0.21 AU, a temperature of \sim1600
K, and a ring thickness \sim0.02 AU. The outer part extends from \sim1 AU to
\sim10 AU with an inner temperature of \sim400 K. We find that the disk is
nearly face-on with an inclination angle of < 28 degree. Our
temperature-gradient modeling suggests that the NIR excess is dominated by
emission from a narrow, bright rim located at the dust sublimation radius,
while an extended halo component contributes \sim6% to the total flux at 2
{\mu}m. The MIR model emission has a two-component structure with \sim20% flux
from the inner ring and the rest from the outer part. This two-component
structure suggests a disk gap, which is possibly caused by the shadow of a
puffed-up inner rim.Comment: 7 pages, 5 figures, accepted by A&
- …
