1,423 research outputs found
Effect of ontogenetic increases in body size on burst swimming performance in tadpoles of the striped marsh frog, Limnodynastes peronii
The effect of ontogenetic increases in total length on burst swimming performance was investigated in tadpoles of the striped marsh frog (Limnodynastes peronii) over the total-length range of 1.5-4 cm and Gosner developmental stages 25-38. The burst swimming performance of tadpoles at 10 degrees and 24 degrees C was determined by videotaping startle responses with a highspeed video camera at 200 Hz and analysing the sequences frame by frame. Maximum swimming velocity (U-max) and acceleration (A(max)) increased with total length (L) at a rate that was proportionally greater than the increase in total length (i.e., positive allometry; exponents >1) and was described by the allometric equations U-max = 0.061L(1.34) and A(max) =1.15L(1.11) at 10 degrees C and U-max = 0.114L(1.34) and A(max) = 1.54L(1.11) at 24 degrees C. Stride length increased with a total-length exponent of approximately 1 bur was unaffected by temperature. Tail-beat frequency was not affected by total length and increased from 7.8 +/- 0.2 Hz at 10 degrees C to 21.7 +/- 0.7 Hz at 24 degrees C. Developmental stage did not significantly influence the relationship between total length and U-max or A(max). Furthermore, temperature and the associated changes in water viscosity did not affect the relationship between total length and burst swimming performance. At their U-max, Reynolds numbers ranged from approximately 1,500 in the smaller tadpoles up to 50,000 for the larger animals at 24 degrees C We suggest the positive allometry of U-max in larval L. peronii was due in part to the increases in tail width (TW) with total length (TW= -1.36(1.66)), possibly reflecting the increasing importance of burst swimming performance to survival during larval development
Simplifying and improving the extraction of nitrate from freshwater for stable isotope analyses
Determining the isotopic composition of nitrate (NO3_) in water can prove useful to identify NO3_ sources and to understand its dynamics in aquatic systems. Among the procedures available, the ‘ionexchange resin method’ involves extracting NO3_ from freshwater and converting it into solid silver nitrate (AgNO3), which is then analysed for 15N/14N and 18O/16O ratios. This study describes a simplified methodology where water was not pre-treated to remove dissolved organic carbon (DOC) or barium cations (added to precipitate O-bearing contaminants), which suited samples with high NO3_ ($400 mM or 25 mg L_1 NO3_) and low DOC (typically <417 mM of C or 5 mg L_1 C) levels. % N analysis revealed that a few AgNO3 samples were of low purity (compared with expected % N of 8.2), highlighting the necessity to introduce quality control/quality assurance procedures for silver nitrate prepared from field water samples. Recommendations are then made to monitor % N together with % O (expected at 28.6, i.e. 3.5 fold % N) in AgNO3 in order to better assess the type and gravity of the contamination as well as to identify potentially unreliable data
Hanging drop crystal growth apparatus and method
An apparatus (10) is constructed having a cylindrical enclosure (16) within which a disc-shaped wicking element (18) is positioned. A well or recess (22) is cut into an upper side (24) of this wicking element, and a glass cover plate or slip (28) having a protein drop disposed thereon is sealably positioned on the wicking element (18), with drop (12) being positioned over well or recess (22). A flow of control fluid is generated by a programmable gradient former (16), with this control fluid having a vapor pressure that is selectively variable. This flow of control fluid is coupled to the wicking element (18) where control fluid vapor diffusing from walls (26) of the recess (22) is exposed to the drop (12), forming a vapor pressure gradient between the drop (12) and the control fluid vapor. Initially, this gradient is adjusted to draw solvent from the drop (12) at a relatively high rate, and as the critical supersaturation point is approached (the point at which crystal nucleation occurs), the gradient is reduced to more slowly draw solvent from the drop (12). This allows discrete protein molecules more time to orient themselves into an ordered crystalline lattice, producing protein crystals which, when processed by X-ray crystallography, possess a high degree of resolution
An evaluation of genotyping by sequencing (GBS) to map the <em>Breviaristatum-e (ari-e)</em> locus in cultivated barley
ABSTRACT: We explored the use of genotyping by sequencing (GBS) on a recombinant inbred line population (GPMx) derived from a cross between the two-rowed barley cultivar ‘Golden Promise’ (ari-e.GP/Vrs1) and the six-rowed cultivar ‘Morex’ (Ari-e/vrs1) to map plant height. We identified three Quantitative Trait Loci (QTL), the first in a region encompassing the spike architecture gene Vrs1 on chromosome 2H, the second in an uncharacterised centromeric region on chromosome 3H, and the third in a region of chromosome 5H coinciding with the previously described dwarfing gene Breviaristatum-e (Ari-e). BACKGROUND: Barley cultivars in North-western Europe largely contain either of two dwarfing genes; Denso on chromosome 3H, a presumed ortholog of the rice green revolution gene OsSd1, or Breviaristatum-e (ari-e) on chromosome 5H. A recessive mutant allele of the latter gene, ari-e.GP, was introduced into cultivation via the cv. ‘Golden Promise’ that was a favourite of the Scottish malt whisky industry for many years and is still used in agriculture today. RESULTS: Using GBS mapping data and phenotypic measurements we show that ari-e.GP maps to a small genetic interval on chromosome 5H and that alternative alleles at a region encompassing Vrs1 on 2H along with a region on chromosome 3H also influence plant height. The location of Ari-e is supported by analysis of near-isogenic lines containing different ari-e alleles. We explored use of the GBS to populate the region with sequence contigs from the recently released physically and genetically integrated barley genome sequence assembly as a step towards Ari-e gene identification. CONCLUSIONS: GBS was an effective and relatively low-cost approach to rapidly construct a genetic map of the GPMx population that was suitable for genetic analysis of row type and height traits, allowing us to precisely position ari-e.GP on chromosome 5H. Mapping resolution was lower than we anticipated. We found the GBS data more complex to analyse than other data types but it did directly provide linked SNP markers for subsequent higher resolution genetic analysis
Implementasi Algoritma Fuzzy C - Means Clustering Dan Simple Additive Weighting Dalam Pemberian Bantuan Program Peningkatan Kualitas Kawasan Permukiman
Permasalahan kemiskinan di Indonesia sudah sangat mendesak untuk ditangani, khususnya pada wilayah perkotaan. Kementrian PUPR menyatakan salah satu kondisi fisik masyarakat miskin adalah tidak memiliki akses sarana dan prasarana dasar lingkungan yang memadai dengan kualitas permukiman yang jauh di bawah standar kelayakan. Untuk mengatasi permasalahan tersebut, pemerintah membentuk Program Peningkatan Kualitas Kawasan Permukiman (P2KKP) dengan harapan apabila kualitas kawasan permukiman dapat ditingkatkan maka masalah kemiskinan juga dapat terselesaikan. Di Kota Bengkulu, P2KKP mengelola data 14 indikator kondisi permukiman dari 1.183 RT yang tergabung dalam 67 Kelurahan dan 9 Kecamatan. 14 indikator tersebut dijadikan acuan untuk melakukan pengelompokkan RT berdasarkan kondisi permukimannya kemudian malakukan perangkingan untuk mengetahui RT-RT mana saja yang layak untuk diberikan bantuan. Dalam penelitian ini, dibangun sebuah sistem berbasis website yang dapat membantu proses penginputan data kondisi permukiman, melakukan pengelompokkan dan perangkingan serta publikasi informasi kepada masyarakat. Sistem ini akan mengimplementasikan algoritma fuzzy c-means clustering untuk proses pengelompokkan dan simple additive weighting untuk proses perangkinga
Material Studies Related to the Use of NaK Heat Exchangers Coupled to Stirling Heater Heads
NASA has been supporting design studies and technology development that could provide power to an outpost on the Moon, Mars, or an asteroid. Technology development efforts have included fabrication and evaluation of components used in a Stirling engine power conversion system. Destructive material evaluation was performed on a NaK shell heat exchanger that was developed by the NASA Glenn Research Center (GRC) and integrated with a commercial 1 kWe Stirling convertor from Sunpower Incorporated. The NaK Stirling test demonstrated Stirling convertor electrical power generation using a pumped liquid metal heat source under thermal conditions that represent the heat exchanger liquid metal loop in a Fission Power Systems (FPS) reactor. The convertors were operated for a total test time of 66 hr at a maximum temperature of 823 K. After the test was completed and NaK removed, the heat exchanger assembly was sectioned to evaluate any material interactions with the flowing liquid metal. Several dissimilar-metal braze joint options, crucial for the heat exchanger transfer path, were also investigated. A comprehensive investigation was completed and lessons learned for future heat exchanger development efforts are discussed
Overview of the Field Phase of the NASA Tropical Cloud Systems and Processes (TCSP)Experiment
The Tropical Cloud Systems and Processes experiment is sponsored by the National Aeronautics and Space Administration (NASA) to investigate characteristics of tropical cyclone genesis, rapid intensification and rainfall using a three-pronged approach that emphasizes satellite information, suborbital observations and numerical model simulations. Research goals include demonstration and assessment of new technology, improvements to numerical model parameterizations, and advancements in data assimilation techniques. The field phase of the experiment was based in Costa Rica during July 2005. A fully instrumented NASA ER-2 high altitude airplane was deployed with Doppler radar, passive microwave instrumentation, lightning and electric field sensors and an airborne simulator of visible and infrared satellite sensors. Other assets brought to TCSP were a low flying uninhabited aerial vehicle, and a surface-based radiosonde network. In partnership with the Intensity Forecasting Experiment of the National Oceanic and Atmospheric Administration (NOAA) Hurricane Research Division, two NOAA P-3 aircraft instrumented with radar, passive microwave, microphysical, and dropsonde instrumentation were also deployed to Costa Rica. The field phase of TCSP was conducted in Costa Rica to take advantage of the geographically compact tropical cyclone genesis region of the Eastern Pacific Ocean near Central America. However, the unusual 2005 hurricane season provided numerous opportunities to sample tropical cyclone development and intensification in the Caribbean Sea and Gulf of Mexico as well. Development of Hurricane Dennis and Tropical Storm Gert were each investigated over several days in addition to Hurricane Emily as it was close to Saffir-Simpson Category 5 intensity. An overview of the characteristics of these storms along with the pregenesis environment of Tropical Storm Eugene in the Eastern Pacific will be presented
Thin-Film Metamaterials called Sculptured Thin Films
Morphology and performance are conjointed attributes of metamaterials, of
which sculptured thin films (STFs) are examples. STFs are assemblies of
nanowires that can be fabricated from many different materials, typically via
physical vapor deposition onto rotating substrates. The curvilinear--nanowire
morphology of STFs is determined by the substrate motions during fabrication.
The optical properties, especially, can be tailored by varying the morphology
of STFs. In many cases prototype devices have been fabricated for various
optical, thermal, chemical, and biological applications.Comment: to be published in Proc. ICTP School on Metamaterials (Augsut 2009,
Sibiu, Romania
- …
