15,850 research outputs found

    Intersexual conflict influences female reproductive success in a female-dispersing primate

    Get PDF
    In group-living mammals, individual efforts to maximize reproductive success result in conflicts and compromises between the sexes. Females utilize counterstrategies to minimize the costs of sexual coercion by males, but few studies have examined the effect of such behaviors on female reproductive success. Secondary dispersal by females is rare among group-living mammals, but in western gorillas, it is believed to be a mate choice strategy to minimize infanticide risk and infant mortality. Previous research suggested that females choose males that are good protectors. However, how much female reproductive success varies depending on male competitive ability and whether female secondary dispersal leads to reproductive costs or benefits has not been examined. We used data on 100 females and 229 infants in 36 breeding groups from a 20-year long-term study of wild western lowland gorillas to investigate whether male tenure duration and female transfer rate had an effect on interbirth interval, female birth rates, and offspring mortality. We found that offspring mortality was higher near the end of males’ tenures, even after excluding potential infanticide when those males died, suggesting that females suffer a reproductive cost by being with males nearing the end of their tenures. Females experience a delay in breeding when they dispersed, having a notable effect on birth rates of surviving offspring per female if females transfer multiple times in their lives. This study exemplifies that female counterstrategies to mitigate the effects of male-male competition and sexual coercion may not be sufficient to overcome the negative consequences of male behavior

    An Online Decision-Theoretic Pipeline for Responder Dispatch

    Full text link
    The problem of dispatching emergency responders to service traffic accidents, fire, distress calls and crimes plagues urban areas across the globe. While such problems have been extensively looked at, most approaches are offline. Such methodologies fail to capture the dynamically changing environments under which critical emergency response occurs, and therefore, fail to be implemented in practice. Any holistic approach towards creating a pipeline for effective emergency response must also look at other challenges that it subsumes - predicting when and where incidents happen and understanding the changing environmental dynamics. We describe a system that collectively deals with all these problems in an online manner, meaning that the models get updated with streaming data sources. We highlight why such an approach is crucial to the effectiveness of emergency response, and present an algorithmic framework that can compute promising actions for a given decision-theoretic model for responder dispatch. We argue that carefully crafted heuristic measures can balance the trade-off between computational time and the quality of solutions achieved and highlight why such an approach is more scalable and tractable than traditional approaches. We also present an online mechanism for incident prediction, as well as an approach based on recurrent neural networks for learning and predicting environmental features that affect responder dispatch. We compare our methodology with prior state-of-the-art and existing dispatch strategies in the field, which show that our approach results in a reduction in response time with a drastic reduction in computational time.Comment: Appeared in ICCPS 201

    Finite-element analysis of contact between elastic self-affine surfaces

    Full text link
    Finite element methods are used to study non-adhesive, frictionless contact between elastic solids with self-affine surfaces. We find that the total contact area rises linearly with load at small loads. The mean pressure in the contact regions is independent of load and proportional to the rms slope of the surface. The constant of proportionality is nearly independent of Poisson ratio and roughness exponent and lies between previous analytic predictions. The contact morphology is also analyzed. Connected contact regions have a fractal area and perimeter. The probability of finding a cluster of area aca_c drops as acτa_c^{-\tau} where τ\tau increases with decreasing roughness exponent. The distribution of pressures shows an exponential tail that is also found in many jammed systems. These results are contrasted to simpler models and experiment.Comment: 13 pages, 15 figures. Replaced after changed in response to referee comments. Final two figures change

    Executive function in first-episode schizophrenia

    Get PDF
    BACKGROUND: We tested the hypothesis that schizophrenia is primarily a frontostriatal disorder by examining executive function in first-episode patients. Previous studies have shown either equal decrements in many cognitive domains or specific deficits in memory. Such studies have grouped test results or have used few executive measures, thus, possibly losing information. We, therefore, measured a range of executive ability with tests known to be sensitive to frontal lobe function. METHODS: Thirty first-episode schizophrenic patients and 30 normal volunteers, matched for age and NART IQ, were tested on computerized test of planning, spatial working memory and attentional set shifting from the Cambridge Automated Neuropsychological Test Battery. Computerized and traditional tests of memory were also administered for comparison. RESULTS: Patients were worse on all tests but the profile was non-uniform. A componential analysis indicated that the patients were characterized by a poor ability to think ahead and organize responses but an intact ability to switch attention and inhibit prepotent responses. Patients also demonstrated poor memory, especially for free recall of a story and associate learning of unrelated word pairs. CONCLUSIONS: In contradistinction to previous studies, schizophrenic patients do have profound executive impairments at the beginning of the illness. However, these concern planning and strategy use rather than attentional set shifting, which is generally unimpaired. Previous findings in more chronic patients, of severe attentional set shifting impairment, suggest that executive cognitive deficits are progressive during the course of schizophrenia. The finding of severe mnemonic impairment at first episode suggests that cognitive deficits are not restricted to one cognitive domain

    String spectra near some null cosmological singularities

    Full text link
    We construct cosmological spacetimes with null Kasner-like singularities as purely gravitational solutions with no other background fields turned on. These can be recast as anisotropic plane-wave spacetimes by coordinate transformations. We analyse string quantization to find the spectrum of string modes in these backgrounds. The classical string modes can be solved for exactly in these time-dependent backgrounds, which enables a detailed study of the near singularity string spectrum, (time-dependent) oscillator masses and wavefunctions. We find that for low lying string modes(finite oscillation number), the classical near-singularity string mode functions are non-divergent for various families of singularities. Furthermore, for any infinitesimal regularization of the vicinity of the singularity, we find a tower of string modes of ultra-high oscillation number which propagate essentially freely in the background. The resulting picture suggests that string interactions are non-negligible near the singularity.Comment: Latex, 30pgs; v2. minor clarifications, references adde

    Parametric Excitation and Squeezing in a Many-Body Spin System

    Full text link
    We demonstrate a new method to coherently excite and control the quantum spin states of an atomic Bose gas using parametric excitation of the collective spin by time varying the relative strength of the Zeeman and spin-dependent collisional interaction energies at multiples of the natural frequency of the system. Compared to the usual single-particle quantum control techniques used to excite atomic spins (e.g. Rabi oscillations using rf or microwave fields), the method demonstrated here is intrinsically many-body, requiring inter-particle interactions. While parametric excitation of a classical system is ineffective from the ground state, we show that in our quantum system, parametric excitation from the quantum ground state leads to the generation of quantum squeezed states
    corecore