2,573 research outputs found
Homomorphisms of Strongly Regular Graphs
We prove that if and are primitive strongly regular graphs with the
same parameters and is a homomorphism from to , then
is either an isomorphism or a coloring (homomorphism to a complete subgraph).
Therefore, the only endomorphisms of a primitive strongly regular graph are
automorphisms or colorings. This confirms and strengthens a conjecture of
Cameron and Kazanidis that all strongly regular graphs are cores or have
complete cores. The proof of the result is elementary, mainly relying on linear
algebraic techniques. In the second half of the paper we discuss implications
of the result and the idea underlying the proof. We also show that essentially
the same proof can be used to obtain a more general statement.Comment: strengthened main result, shortened proof of main resul
The application of aerospace technology to biomedical problems Quarterly report, 15 Jun. - 31 Aug. 1969
Applications of aerospace technology to biomedical problem
Biomedical applications of aerospace- generated technology Quarterly report, 1 Dec. 1968 - 28 Feb. 1969
Biomedical applications team for transferring aerospace generated technology to nonaerospace biomedical fiel
Nonlocal Games and Quantum Permutation Groups
We present a strong connection between quantum information and quantum
permutation groups. Specifically, we define a notion of quantum isomorphisms of
graphs based on quantum automorphisms from the theory of quantum groups, and
then show that this is equivalent to the previously defined notion of quantum
isomorphism corresponding to perfect quantum strategies to the isomorphism
game. Moreover, we show that two connected graphs and are quantum
isomorphic if and only if there exists and that are
in the same orbit of the quantum automorphism group of the disjoint union of
and . This connection links quantum groups to the more concrete notion
of nonlocal games and physically observable quantum behaviours. We exploit this
link by using ideas and results from quantum information in order to prove new
results about quantum automorphism groups, and about quantum permutation groups
more generally. In particular, we show that asymptotically almost surely all
graphs have trivial quantum automorphism group. Furthermore, we use examples of
quantum isomorphic graphs from previous work to construct an infinite family of
graphs which are quantum vertex transitive but fail to be vertex transitive,
answering a question from the quantum group literature.
Our main tool for proving these results is the introduction of orbits and
orbitals (orbits on ordered pairs) of quantum permutation groups. We show that
the orbitals of a quantum permutation group form a coherent
configuration/algebra, a notion from the field of algebraic graph theory. We
then prove that the elements of this quantum orbital algebra are exactly the
matrices that commute with the magic unitary defining the quantum group. We
furthermore show that quantum isomorphic graphs admit an isomorphism of their
quantum orbital algebras which maps the adjacency matrix of one graph to that
of the other.Comment: 39 page
A new property of the Lov\'asz number and duality relations between graph parameters
We show that for any graph , by considering "activation" through the
strong product with another graph , the relation between the independence number and the Lov\'{a}sz number of
can be made arbitrarily tight: Precisely, the inequality
becomes asymptotically an equality for a suitable sequence of ancillary graphs
.
This motivates us to look for other products of graph parameters of and
on the right hand side of the above relation. For instance, a result of
Rosenfeld and Hales states that with the fractional
packing number , and for every there exists that makes the
above an equality; conversely, for every graph there is a that attains
equality.
These findings constitute some sort of duality of graph parameters, mediated
through the independence number, under which and are dual
to each other, and the Lov\'{a}sz number is self-dual. We also show
duality of Schrijver's and Szegedy's variants and
of the Lov\'{a}sz number, and explore analogous notions for the chromatic
number under strong and disjunctive graph products.Comment: 16 pages, submitted to Discrete Applied Mathematics for a special
issue in memory of Levon Khachatrian; v2 has a full proof of the duality
between theta+ and theta- and a new author, some new references, and we
corrected several small errors and typo
- …
