5,233 research outputs found
Observation of b symmetry vibrational levels of the SO \tilde{\mbox{C}} B state: Vibrational level staggering, Coriolis interactions, and rotation-vibration constants
The B state of SO has a double-minimum
potential in the antisymmetric stretch coordinate, such that the minimum energy
geometry has nonequivalent SO bond lengths. However, low-lying levels with odd
quanta of antisymmetric stretch (b vibrational symmetry) have not
previously been observed because transitions into these levels from the
zero-point level of the state are vibronically forbidden.
We use IR-UV double resonance to observe the b vibrational levels of the
state below 1600 cm of vibrational excitation. This
enables a direct characterization of the vibrational level staggering that
results from the double-minimum potential. In addition, it allows us to
deperturb the strong -axis Coriolis interactions between levels of a and
b vibrational symmetry, and to determine accurately the vibrational
dependence of the rotational constants in the distorted
electronic state
Visible and Ultraviolet Laser Spectroscopy of ThF
The molecular ion ThF is the species to be used in the next generation of
search for the electron's Electric Dipole Moment (eEDM) at JILA. The
measurement requires creating molecular ions in the eEDM sensitive state, the
rovibronic ground state , , . Survey spectroscopy of
neutral ThF is required to identify an appropriate intermediate state for a
Resonance Enhanced Multi-Photon Ionization (REMPI) scheme that will create ions
in the required state. We perform broadband survey spectroscopy (from 13000 to
44000~cm) of ThF using both Laser Induced Fluorescence (LIF) and
REMPI spectroscopy. We observe and assign 345 previously unreported vibronic
bands of ThF. We demonstrate 30\% efficiency in the production of ThF ions
in the eEDM sensitive state using the [32.85] intermediate
state. In addition, we propose a method to increase the aforementioned
efficiency to 100\% by using vibrational autoionization via
core-nonpenetrating Rydberg states, and discuss theoretical and experimental
challenges. Finally, we also report 83 vibronic bands of an impurity species,
ThO.Comment: 49 pages, 7 figure
Collisional depolarization of state selected (J,M J ) BaO A 1Σ+ measured by optical–optical double resonance
The optical–optical double resonance (OODR) technique is used to investigate the change in magnetic quantum number (M) a state selected molecule undergoes on collision with other molecules. A first linearly polarized dye laser prepares A 1Σ+BaO(v = 1) in the J = 1, M = 0 sublevel. The extent of collisional transfer to other M sublevels of both J = 1 and J = 2 is then probed by a second polarized dye laser which induces fluorescence from the C 1Σ+ state. Elastic collisions (ΔJ = 0) between BaO (A 1Σ+) and CO2 are observed to change M from 0 to ±1 leaving J unchanged. The total elasticM‐changing cross section is σΔM CO2 = 8.4±2.4 Å2. Inelastic collisions (ΔJ = +1’ which transfer molecules to j = 2 also cause M changes. with both Ar and CO2 as collision partners. M, the s p a c e‐f i x e d projection of J, is found to be neither conserved nor randomized. Quantum atom–diatom collision models with quantization axis along the relative velocity vector are considered. Transition amplitudes in this system are evaluated using the l‐dominant and CS approximations
Laser-induced fluorescence studies of HfF+ produced by autoionization
Autoionization of Rydberg states of HfF, prepared using the optical-optical
double resonance (OODR) technique, holds promise to create HfF+ in a particular
Zeeman level of a rovibronic state for an electron electric dipole moment
(eEDM) search. We characterize a vibronic band of Rydberg HfF at 54 cm-1 above
the lowest ionization threshold and directly probe the state of the ions formed
from this vibronic band by performing laser-induced fluorescence (LIF) on the
ions. The Rydberg HfF molecules show a propensity to decay into only a few ion
rotational states of a given parity and are found to preserve their orientation
qualitatively upon autoionization. We show empirically that we can create 30%
of the total ion yield in a particular |J+,M+> state and present a simplified
model describing autoionization from a given Rydberg state that assumes no
angular dynamics.Comment: 8 pages, 5 figure
Restructuring the Tridiagonal and Bidiagonal QR Algorithms for Performance
We show how both the tridiagonal and bidiagonal QR algorithms can be restructured so that they be-
come rich in operations that can achieve near-peak performance on a modern processor. The key is a
novel, cache-friendly algorithm for applying multiple sets of Givens rotations to the eigenvector/singular
vector matrix. This algorithm is then implemented with optimizations that (1) leverage vector instruction
units to increase floating-point throughput, and (2) fuse multiple rotations to decrease the total number of
memory operations. We demonstrate the merits of these new QR algorithms for computing the Hermitian
eigenvalue decomposition (EVD) and singular value decomposition (SVD) of dense matrices when all eigen-
vectors/singular vectors are computed. The approach yields vastly improved performance relative to the
traditional QR algorithms for these problems and is competitive with two commonly used alternatives—
Cuppen’s Divide and Conquer algorithm and the Method of Multiple Relatively Robust Representations—
while inheriting the more modest O(n) workspace requirements of the original QR algorithms. Since the
computations performed by the restructured algorithms remain essentially identical to those performed by
the original methods, robust numerical properties are preserved
CuAAC click chemistry for the enhanced detection of novel alkyne-based natural product toxins
In the context of discovering and quantifying terminal alkyne-based natural products, here we report the combination of CuAAC click chemistry with LC-MS for the detection of polyether toxins (prymnesins) associated with harmful algal blooms. The added-value of the CuAAC-based approach is evident from our ability to detect novel prymnesin-like compounds in algal species with previously uncharacterised toxins
A New Approach toward Transition State Spectroscopy
Chirped-Pulse millimetre-Wave (CPmmW) rotational spectroscopy provides a new
class of information about photolysis transition state(s). Measured intensities
in rotational spectra determine species-isomer-vibrational populations,
provided that rotational populations can be thermalized. The formation and
detection of S0 vinylidene is discussed in the limits of low and high initial
rotational excitation. CPmmW spectra of 193 nm photolysis of Vinyl Cyanide
(Acrylonitrile) contain J=0-1 transitions in more than 20 vibrational levels of
HCN, HNC, but no transitions in vinylidene or highly excited local-bender
vibrational levels of acetylene. Reasons for the non-observation of the
vinylidene co-product of HCN are discussed.Comment: Accepted by Faraday Discussion
Detection of mSiglec-E, in solution and expressed on the surface of Chinese hamster ovary cells, using sialic acid functionalised gold nanoparticles
Sialic acids are widespread in biology, fulfilling a wide range of functions. Their cognate lectin receptors - Siglecs - are equally diverse and widely distributed, with different Siglecs found within distinct populations of cells in the haemopoietic, immune and nervous systems. A convenient way to assay ligand recognition of soluble Siglecs would be useful, as would methods for the concomitant assessment of Siglec distribution on cell surfaces. Here we report the use of gold nanoparticles functionalised with a sialic acid ligand diluted with a polyethylene glycol (PEG) ligand for the plasmonic detection of a soluble form of murine Siglec-E (mSiglec-E-Fc fusion protein) and, importantly, for the specific detection of the same Siglec expressed on the surface of mammalian cells. These sialic acid functionalised nanoparticles are shown to overcome problems such as cellular cis interactions and low Siglec-ligand affinity. The gold nanoparticles were functionalised with various ratios of sialic acid : PEG ligands and the optimum ratio for the detection of murine Siglec-E was established based on the plasmonic detection of the soluble pre-complexed recombinant form of murine Siglec-E (mSiglec-E-Fc fusion protein). The optimum ratio for the detection of the fusion protein was found to be sialic acid : PEG ligands in a 50 : 50 ratio (glyconanoparticles 1). The optimised glyconanoparticles 1 were used to recognise and bind to the murine Siglec-E expressed on the surface of transfected Chinese hamster ovary cells as determined by transmission electron microscopy
Unravelling the Specificity of Laminaribiose Phosphorylase from Paenibacillus sp. YM‐1 towards Donor Substrates Glucose/Mannose 1‐Phosphate by Using X‐ray Crystallography and Saturation Transfer Difference NMR Spectroscopy
Glycoside phosphorylases (GPs) carry out a reversible phosphorolysis of carbohydrates into oligosaccharide acceptors and the corresponding sugar 1‐phosphates. The reversibility of the reaction enables the use of GPs as biocatalysts for carbohydrate synthesis. Glycosyl hydrolase family 94 (GH94), which only comprises GPs, is one of the most studied GP families that have been used as biocatalysts for carbohydrate synthesis, in academic research and in industrial production. Understanding the mechanism of GH94 enzymes is a crucial step towards enzyme engineering to improve and expand the applications of these enzymes in synthesis. In this work with a GH94 laminaribiose phosphorylase from Paenibacillus sp. YM‐1 (PsLBP), we have demonstrated an enzymatic synthesis of disaccharide 1 (β‐d‐mannopyranosyl‐(1→3)‐d‐glucopyranose) by using a natural acceptor glucose and noncognate donor substrate α‐mannose 1‐phosphate (Man1P). To investigate how the enzyme recognises different sugar 1‐phosphates, the X‐ray crystal structures of PsLBP in complex with Glc1P and Man1P have been solved, providing the first molecular detail of the recognition of a noncognate donor substrate by GPs, which revealed the importance of hydrogen bonding between the active site residues and hydroxy groups at C2, C4, and C6 of sugar 1‐phosphates. Furthermore, we used saturation transfer difference NMR spectroscopy to support crystallographic studies on the sugar 1‐phosphates, as well as to provide further insights into the PsLBP recognition of the acceptors and disaccharide products
- …
