327 research outputs found
Free-to-Roll Testing of Airplane Models in Wind Tunnels
A free-to-roll (FTR) test technique and test rig make it possible to evaluate both the transonic performance and the wingdrop/ rock behavior of a high-strength airplane model in a single wind-tunnel entry. The free-to-roll test technique is a single degree-of-motion method in which the model is free to roll about the longitudinal axis. The rolling motion is observed, recorded, and analyzed to gain insight into wing-drop/rock behavior. Wing-drop/rock is one of several phenomena symptomatic of abrupt wing stall. FTR testing was developed as part of the NASA/Navy Abrupt Wing Stall Program, which was established for the purposes of understanding and preventing significant unexpected and uncommanded (thus, highly undesirable) lateral-directional motions associated with wing-drop/rock, which have been observed mostly in fighter airplanes under high-subsonic and transonic maneuvering conditions. Before FTR testing became available, wingrock/ drop behavior of high-performance airplanes undergoing development was not recognized until flight testing. FTR testing is a reliable means of detecting, and evaluating design modifications for reducing or preventing, very complex abrupt wing stall phenomena in a ground facility prior to flight testing. The FTR test rig was designed to replace an older sting attachment butt, such that a model with its force balance and support sting could freely rotate about the longitudinal axis. The rig (see figure) includes a rotary head supported in a stationary head with a forward spherical roller bearing and an aft needle bearing. Rotation is amplified by a set of gears and measured by a shaft-angle resolver; the roll angle can be resolved to within 0.067 degrees at a rotational speed up to 1,000 degrees/s. An assembly of electrically actuated brakes between the rotary and stationary heads can be used to hold the model against a rolling torque at a commanded roll angle. When static testing is required, a locking bar is used to fix the rotating head rigidly to the stationary head. Switching between the static and FTR test modes takes only about 30 minutes. The FTR test rig was originally mounted in a 16-ft (approximately 4.0-m) transonic wind tunnel, but could just as well be adapted to use in any large wind tunnel. In one series of tests on the FTR rig, static and dynamic characteristics of models of four different fighter airplanes were measured. Two of the models exhibited uncommanded lateral motions; the other two did not. A figure of merit was developed to discern the severity of lateral motions. Using this figure of merit, it was shown that the FTR test technique enabled identification of conditions under which the uncommanded lateral motions occurred. The wind-tunnel conditions thus identified were found to be correlated with flight conditions under which the corresponding full-size airplanes exhibited uncommanded lateral motions
Rethinking the role of local knowledge networks in territorial innovation models
Traditionally, territorial innovation models (Moulaert and Sekia Citation2003), such as clusters, industrial districts, and regional innovation systems, are characterised by a geographic concentration of competences and knowledge as well as by the spatial diffusion of competences and knowledge (Saxenian Citation1994; Sorenson and Stuart Citation2001; Tallman et al. Citation2004; Marshall Citation1920). However, competences and knowledge are not ubiquitous and available to all organisations located within such geographic concentrations. Knowledge, for instance, rather diffuses through internal and external knowledge networks (Giuliani and Bell Citation2005; Giuliani Citation2013; Fitjar and Rodríguez-Pose Citation2017). Consequently, it has been recognised for a long time that a comprehensive understanding of the working and success of territorial innovation systems is only possible when it is based on a framework centred on these systems’ internal and external knowledge networks (Giuliani Citation2005; Glückler Citation2007).
Inspired by this idea, a rich stream of research has emerged that seeks to generate insights into the emergence, working, and structures of such networks. For instance, works in this stream analyse factors explaining the emergence and evolution over time of internal knowledge network relations (Cassi and Plunket Citation2015; Menzel, Feldman, and Broekel Citation2017; Niosi and Banik Citation2005; Plum and Hassink Citation2011; Ter Wal Citation2014), the embeddedness of clusters (and their internal networks) into inter-regional and global knowledge linkages (see many contributions in the special issue by Scherngell (Citation2013); Broekel, Fornahl, and Morrison Citation2015), and the role-specific organisations play in the establishment of such external linkages (Graf Citation2011; Morrison Citation2008).
This special issue contributes to this general debate and aims to rethink the role of local knowledge networks in territorial innovation models unveiling also new research opportunities. It partly consists of papers presented at two international conferences on ‘Rethinking Clusters’Footnote1 in Florence in 2018 and in Padua, in 2019.publishedVersio
Measurement of Atmospheric Neutrino Oscillations with the ANTARES Neutrino Telescope
The data taken with the ANTARES neutrino telescope from 2007 to 2010, a total
live time of 863 days, are used to measure the oscillation parameters of
atmospheric neutrinos. Muon tracks are reconstructed with energies as low as 20
GeV. Neutrino oscillations will cause a suppression of vertical upgoing muon
neutrinos of such energies crossing the Earth. The parameters determining the
oscillation of atmospheric neutrinos are extracted by fitting the event rate as
a function of the ratio of the estimated neutrino energy and reconstructed
flight path through the Earth. Measurement contours of the oscillation
parameters in a two-flavour approximation are derived. Assuming maximum mixing,
a mass difference of eV is
obtained, in good agreement with the world average value.Comment: 9 pages, 5 figure
Status and Recent Results of the Acoustic Neutrino Detection Test System AMADEUS
The AMADEUS system is an integral part of the ANTARES neutrino telescope in
the Mediterranean Sea. The project aims at the investigation of techniques for
acoustic neutrino detection in the deep sea. Installed at a depth of more than
2000m, the acoustic sensors of AMADEUS are based on piezo-ceramics elements for
the broad-band recording of signals with frequencies ranging up to 125kHz.
AMADEUS was completed in May 2008 and comprises six "acoustic clusters", each
one holding six acoustic sensors that are arranged at distances of roughly 1m
from each other. The clusters are installed with inter-spacings ranging from
15m to 340m. Acoustic data are continuously acquired and processed at a
computer cluster where online filter algorithms are applied to select a
high-purity sample of neutrino-like signals. 1.6 TB of data were recorded in
2008 and 3.2 TB in 2009. In order to assess the background of neutrino-like
signals in the deep sea, the characteristics of ambient noise and transient
signals have been investigated. In this article, the AMADEUS system will be
described and recent results will be presented.Comment: 7 pages, 8 figures. Proceedings of ARENA 2010, the 4th International
Workshop on Acoustic and Radio EeV Neutrino Detection Activitie
Low prevalence of soil transmitted helminth infection in Ugandan children hospitalized with severe malaria
Co-infection by intestinal helminths and Plasmodium spp. may be common in endemic communities. Several studies have identified a relationship between helminth infection, Plasmodium spp. infection and malaria severity. However, the relationship is not well defined, and results are inconclusive. We analyzed stool samples from a cohort of children with severe malaria enrolled in two hospitals in Uganda from 2014-2017 and asymptomatic community children from the same household or neighborhood and enrolled at the same time, all 6 months to 48 months of age. We investigated if intestinal helminth infection modified risk of severe malaria. We extracted nucleic acids from stool and tested them for six helminth species (Anyclostoma duodenale, Ascaris lumbricoides, Necator americanus, Strongyloides stercolaris, Trichuris trichiura, Shistosoma mansoni) using highly sensitive quantitative PCR. We found a low prevalence of infection by ≥1 intestinal helminth species in children with severe malaria (5.1%, n=9/177) and community control children (4.0%, n=1/25). Infection by ≥1 of the helminths assessed was not associated with severe malaria (aRR = 1.0, 95% Confidence Interval = 0.82, 1.3, p = 0.78). In 2003 Uganda instituted a national deworming program, with anti-helminth medication provided twice annually to children 6 months to 5 years of age. In these areas of Uganda, the national deworming campaign has been highly successful, as stool-based helminth infection was rare even when using highly sensitive methods of detection and was not a major contributor to risk of severe malaria
A First Search for coincident Gravitational Waves and High Energy Neutrinos using LIGO, Virgo and ANTARES data from 2007
We present the results of the first search for gravitational wave bursts
associated with high energy neutrinos. Together, these messengers could reveal
new, hidden sources that are not observed by conventional photon astronomy,
particularly at high energy. Our search uses neutrinos detected by the
underwater neutrino telescope ANTARES in its 5 line configuration during the
period January - September 2007, which coincided with the fifth and first
science runs of LIGO and Virgo, respectively. The LIGO-Virgo data were analysed
for candidate gravitational-wave signals coincident in time and direction with
the neutrino events. No significant coincident events were observed. We place
limits on the density of joint high energy neutrino - gravitational wave
emission events in the local universe, and compare them with densities of
merger and core-collapse events.Comment: 19 pages, 8 figures, science summary page at
http://www.ligo.org/science/Publication-S5LV_ANTARES/index.php. Public access
area to figures, tables at
https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=p120000
The positioning system of the ANTARES Neutrino Telescope
The ANTARES neutrino telescope, located 40km off the coast of Toulon in the Mediterranean Sea at a mooring depth of about 2475m, consists of twelve detection lines equipped typically with 25 storeys. Every storey carries three optical modules that detect Cherenkov light induced by charged secondary particles (typically muons) coming from neutrino interactions. As these lines are flexible structures fixed to the sea bed and held taut by a buoy, sea currents cause the lines to move and the storeys to rotate. The knowledge of the position of the optical modules with a precision better than 10cm is essential for a good reconstruction of particle tracks. In this paper the ANTARES positioning system is described. It consists of an acoustic positioning system, for distance triangulation, and a compass-tiltmeter system, for the measurement of the orientation and inclination of the storeys. Necessary corrections are discussed and the results of the detector alignment procedure are described
A search for neutrino emission from the Fermi bubbles with the ANTARES telescope
Analysis of the Fermi-LAT data has revealed two extended structures above and below the Galactic Centre emitting gamma rays with a hard spectrum, the so-called Fermi bubbles. Hadronic models attempting to explain the origin of the Fermi bubbles predict the emission of high-energy neutrinos and gamma rays with similar fluxes. The ANTARES detector, a neutrino telescope located in the Mediterranean Sea, has a good visibility to the Fermi bubble regions. Using data collected from 2008 to 2011 no statistically significant excess of events is observed and therefore upper limits on the neutrino flux in TeV range from the Fermi bubbles are derived for various assumed energy cutoffs of the source
Human neutrophils activated via TLR8 promote Th17 polarization through IL-23
Human neutrophils contribute to the regulation of inflammation via the generation of a range of cytokines that affect all elements of the immune system. Here, we investigated their ability to express some of the members of the IL‐12 family after incubation with TLR8 agonists. Highly pure human neutrophils were thus incubated for up to 48 h with or without R848, or other TLR8 agonists, to then measure the expression levels of transcripts and proteins for IL‐12 family member subunits by RNA‐seq, reverse transcription quantitative PCR, and ELISA. We show a TLR8‐mediated inducible expression of IL‐12B and IL‐23A, but not IL‐12A, mRNA, which occurs via chromatin remodeling (as assessed by ChIP‐seq), and subsequent production of IL‐23 and IL‐12B, but no IL‐12, proteins. Induction of IL‐23 requires endogenous TNF‐α, as both mRNA and protein levels were blocked in TLR8‐activated neutrophils via a TNF‐α‐neutralizing Ab. We also show that supernatants from TLR8‐activated neutrophils, but not autologous monocytes, induce the differentiation of Th17 cells from naïve T cells in an IL‐23‐dependent fashion. This study unequivocally demonstrates that highly pure human neutrophils express and produce IL‐23, further supporting the key roles played by these cells in the important IL‐17/IL‐23 network and Th17 responses
A localized sanitation status index as a proxy for fecal contamination in urban Maputo, Mozambique.
Sanitary surveys are used in low- and middle-income countries to assess water, sanitation, and hygiene conditions, but have rarely been compared with direct measures of environmental fecal contamination. We conducted a cross-sectional assessment of sanitary conditions and E. coli counts in soils and on surfaces of compounds (household clusters) in low-income neighborhoods of Maputo, Mozambique. We adapted the World Bank's Urban Sanitation Status Index to implement a sanitary survey tool specifically for compounds: a Localized Sanitation Status Index (LSSI) ranging from zero (poor sanitary conditions) to one (better sanitary conditions) calculated from 20 variables that characterized local sanitary conditions. We measured the variation in the LSSI with E. coli counts in soil (nine locations/compound) and surface swabs (seven locations/compound) in 80 compounds to assess reliability. Multivariable regression indicated that a ten-percentage point increase in LSSI was associated with 0.05 (95% CI: 0.00, 0.11) log10 fewer E. coli/dry gram in courtyard soil. Overall, the LSSI may be associated with fecal contamination in compound soil; however, the differences detected may not be meaningful in terms of public health hazards
- …
