1,848 research outputs found
The Formation of Kiloparsec-scale HI Holes in Dwarf Galaxies
The origin of kpc-scale holes in the atomic hydrogen (H i) distributions of some nearby dwarf irregular galaxies
presents an intriguing problem. Star formation histories (SFHs) derived from resolved stars give us the unique
opportunity to study past star-forming events that may have helped shape the currently visible Hi distribution. Our
sample of five nearby dwarf irregular galaxies spans over an order of magnitude in both total Hi mass and absolute
B-band magnitude and is at the low-mass end of previously studied systems. We use Very Large Array Hi line
data to estimate the energy required to create the centrally dominant hole in each galaxy. We compare this energy estimate to the past energy released by the underlying stellar populations computed from SFHs derived from data taken with the Hubble Space Telescope. The inferred integrated stellar energy released within the characteristic ages exceeds our energy estimates for creating the holes in all cases, assuming expected efficiencies. Therefore, it appears that stellar feedback provides sufficient energy to produce the observed holes. However, we find no obvious signature of single star-forming events responsible for the observed structures when comparing the global SFHs of each galaxy in our sample to each other or to those of dwarf irregular galaxies reported in the literature. We also fail to find evidence of a central star cluster in FUV or Hα imaging. We conclude that large Hi holes are likely formed from multiple generations of star formation and only under suitable interstellar medium conditions
Conduction of Ultracold Fermions Through a Mesoscopic Channel
In a mesoscopic conductor electric resistance is detected even if the device
is defect-free. We engineer and study a cold-atom analog of a mesoscopic
conductor. It consists of a narrow channel connecting two macroscopic
reservoirs of fermions that can be switched from ballistic to diffusive. We
induce a current through the channel and find ohmic conduction, even for a
ballistic channel. An analysis of in-situ density distributions shows that in
the ballistic case the chemical potential drop occurs at the entrance and exit
of the channel, revealing the presence of contact resistance. In contrast, a
diffusive channel with disorder displays a chemical potential drop spread over
the whole channel. Our approach opens the way towards quantum simulation of
mesoscopic devices with quantum gases
Standard survey methods for estimating colony losses and explanatory risk factors in Apis mellifera
This chapter addresses survey methodology and questionnaire design for the collection of data pertaining to estimation of honey bee colony loss rates and identification of risk factors for colony loss. Sources of error in surveys are described. Advantages and disadvantages of different random and non-random sampling strategies and different modes of data collection are presented to enable the researcher to make an informed choice. We discuss survey and questionnaire methodology in some detail, for the purpose of raising awareness of issues to be considered during the survey design stage in order to minimise error and bias in the results. Aspects of survey design are illustrated using surveys in Scotland. Part of a standardized questionnaire is given as a further example, developed by the COLOSS working group for Monitoring and Diagnosis. Approaches to data analysis are described, focussing on estimation of loss rates. Dutch monitoring data from 2012 were used for an example of a statistical analysis with the public domain R software. We demonstrate the estimation of the overall proportion of losses and corresponding confidence interval using a quasi-binomial model to account for extra-binomial variation. We also illustrate generalized linear model fitting when incorporating a single risk factor, and derivation of relevant confidence intervals
Quantum phases of dipolar bosons in optical lattices
The ground state of dipolar bosons placed in an optical lattice is analyzed.
We show that the modification of experimentally accessible parameters can lead
to the realization and control of different quantum phases, including
superfluid, supersolid, Mott insulator, checkerboard, and collapse phases.Comment: 4 pages, 4 eps figures, final versio
The M81 Group Dwarf Irregular Galaxy DDO 165. I. High Velocity Neutral Gas in a Post-Starburst System
We present new multi-configuration VLA HI spectral line observations of the
M81 group dIrr post-starburst galaxy DDO 165. The HI morphology is complex,
with multiple column density peaks surrounding a large region of very low HI
surface density that is offset from the center of the stellar distribution. The
bulk of the neutral gas is associated with the southern section of the galaxy;
a secondary peak in the north contains ~15% of the total HI mass. These
components appear to be kinematically distinct, suggesting that either tidal
processes or large-scale blowout have recently shaped the ISM of DDO 165. Using
spatially-resolved position-velocity maps, we find multiple localized
high-velocity gas features. Cross-correlating with radius-velocity analyses, we
identify eight shell/hole structures in the ISM with a range of sizes (~400-900
pc) and expansion velocities (~7-11 km/s). These structures are compared with
narrow- and broad-band imaging from KPNO and HST. Using the latter data, recent
works have shown that DDO 165's previous "burst" phase was extended temporally
(>1 Gyr). We thus interpret the high-velocity gas features, HI holes, and
kinematically distinct components of the galaxy in the context of the immediate
effects of "feedback" from recent star formation. In addition to creating HI
holes and shells, extended star formation events are capable of creating
localized high velocity motion of the surrounding interstellar material. A
companion paper connects the energetics from the HI and HST data.Comment: The Astrophysical Journal, in press. Full-resolution version
available on request from the first autho
A First Search for coincident Gravitational Waves and High Energy Neutrinos using LIGO, Virgo and ANTARES data from 2007
We present the results of the first search for gravitational wave bursts
associated with high energy neutrinos. Together, these messengers could reveal
new, hidden sources that are not observed by conventional photon astronomy,
particularly at high energy. Our search uses neutrinos detected by the
underwater neutrino telescope ANTARES in its 5 line configuration during the
period January - September 2007, which coincided with the fifth and first
science runs of LIGO and Virgo, respectively. The LIGO-Virgo data were analysed
for candidate gravitational-wave signals coincident in time and direction with
the neutrino events. No significant coincident events were observed. We place
limits on the density of joint high energy neutrino - gravitational wave
emission events in the local universe, and compare them with densities of
merger and core-collapse events.Comment: 19 pages, 8 figures, science summary page at
http://www.ligo.org/science/Publication-S5LV_ANTARES/index.php. Public access
area to figures, tables at
https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=p120000
Anaplastic Lymphoma Kinase Is Required for Neurogenesis in the Developing Central Nervous System of Zebrafish
10.1371/journal.pone.0063757PLoS ONE85
Calibration of muon reconstruction algorithms using an external muon tracking system at the Sudbury Neutrino Observatory
To help constrain the algorithms used in reconstructing high-energy muon events incident on the Sudbury Neutrino Observatory (SNO), a muon tracking system was installed. The system consisted of four planes of wire chambers, which were triggered by scintillator panels. The system was integrated with SNO's main data acquisition system and took data for a total of 95 live days. Using cosmic-ray events reconstructed in both the wire chambers and in SNO's water Cherenkov detector, the external muon tracking system was able to constrain the uncertainty on the muon direction to better than 0.6°
Safe vs. Fair: A formidable trade-off in tackling climate change
Global warming requires a response characterized by forward-looking management of atmospheric carbon and respect for ethical principles. Both safety and fairness must be pursued, and there are severe trade-offs as these are intertwined by the limited headroom for additional atmospheric CO2 emissions. This paper provides a simple numerical mapping at the aggregated level of developed vs. developing countries in which safety and fairness are formulated in terms of cumulative emissions and cumulative per capita emissions respectively. It becomes evident that safety and fairness cannot be achieved simultaneously for strict definitions of both. The paper further posits potential global trading in future cumulative emissions budgets in a world where financial transactions compensate for physical emissions: the safe vs. fair tradeoff is less severe but remains formidable. Finally, we explore very large deployment of engineered carbon sinks and show that roughly 1,000 Gt CO2 of cumulative negative emissions over the century are required to have a significant effect, a remarkable scale of deployment. We also identify the unexplored issue of how such sinks might be treated in sub-global carbon accounting
Unique features of a global human ectoparasite identified through sequencing of the bed bug genome
The bed bug, Cimex lectularius, has re-established itself as a ubiquitous
human ectoparasite throughout much of the world during the past two decades.
This global resurgence is likely linked to increased international travel and
commerce in addition to widespread insecticide resistance. Analyses of the C.
lectularius sequenced genome (650 Mb) and 14,220 predicted protein-coding
genes provide a comprehensive representation of genes that are linked to
traumatic insemination, a reduced chemosensory repertoire of genes related to
obligate hematophagy, host–symbiont interactions, and several mechanisms of
insecticide resistance. In addition, we document the presence of multiple
putative lateral gene transfer events. Genome sequencing and annotation
establish a solid foundation for future research on mechanisms of insecticide
resistance, human–bed bug and symbiont–bed bug associations, and unique
features of bed bug biology that contribute to the unprecedented success of C.
lectularius as a human ectoparasite
- …
