2,477 research outputs found
Summary and recommendations on nuclear electric propulsion technology for the space exploration initiative
A project in Nuclear Electric Propulsion (NEP) technology is being established to develop the NEP technologies needed for advanced propulsion systems. A paced approach has been suggested which calls for progressive development of NEP component and subsystem level technologies. This approach will lead to major facility testing to achieve TRL-5 for megawatt NEP for SEI mission applications. This approach is designed to validate NEP power and propulsion technologies from kilowatt class to megawatt class ratings. Such a paced approach would have the benefit of achieving the development, testing, and flight of NEP systems in an evolutionary manner. This approach may also have the additional benefit of synergistic application with SEI extraterrestrial surface nuclear power applications
8. The 1980s
From the Introduction, “The Changes at ILR that began in the seventies slipped imperceptibly into the eighties, and those that may have originated at that time have, for better or worse, left their mark on the present decade. In other words, dividing history into decades is not a particularly precise way of delineating times. Clearly, there was much gaiety preceding and following the Gay Nineties, as there were certainly many roars heard before and after the Roaring Twenties. Moreover, since the speed of change in academia runs at such a leisurely pace, it is virtually impossible to say exactly when an idea found its way into formal practice. Includes: Introduction; A Dean’s View, 1980-85; Deaning, 1985-88; Robert Risley; and An Advisory Council Perspective
Entanglement under restricted operations: Analogy to mixed-state entanglement
We show that the classification of bi-partite pure entangled states when
local quantum operations are restricted yields a structure that is analogous in
many respects to that of mixed-state entanglement. Specifically, we develop
this analogy by restricting operations through local superselection rules, and
show that such exotic phenomena as bound entanglement and activation arise
using pure states in this setting. This analogy aids in resolving several
conceptual puzzles in the study of entanglement under restricted operations. In
particular, we demonstrate that several types of quantum optical states that
possess confusing entanglement properties are analogous to bound entangled
states. Also, the classification of pure-state entanglement under restricted
operations can be much simpler than for mixed-state entanglement. For instance,
in the case of local Abelian superselection rules all questions concerning
distillability can be resolved.Comment: 10 pages, 2 figures; published versio
Testing self-report time-use diaries against objective instruments in real time
This study provides a new test of time-use diary methodology, comparing diaries with a pair of objective criterion measures: wearable cameras and accelerometers. A volunteer sample of respondents (n = 148) completed conventional self-report paper time-use diaries using the standard UK Harmonised European Time Use Study (HETUS) instrument. On the diary day, respondents wore a camera that continuously recorded images of their activities during waking hours (approximately 1,500–2,000 images/day) and also an accelerometer that tracked their physical activity continuously throughout the 24-hour period covered by the diary. Of the initial 148 participants recruited, 131 returned usable diary and camera records, of whom 124 also provided a usable whole-day accelerometer record. The comparison of the diary data with the camera and accelerometer records strongly supports the use of diary methodology at both the aggregate (sample) and individual levels. It provides evidence that time-use data could be used to complement physical activity questionnaires for providing population-level estimates of physical activity. It also implies new opportunities for investigating techniques for calibrating metabolic equivalent of task (MET) attributions to daily activities using large-scale, population-representative time-use diary studies
Ground and excited state communication within a ruthenium containing benzimidazole metallopolymer
Emission spectroscopy and electrochemistry has been used to probe the electronic communication between adjacent metal centres and the conjugated backbone within a family of imidazole based metallopolymer, [Ru(bpy)2(PPyBBIM)n]2+, in the ground and excited states, bpy is 2,2’-bipyridyl, PPyBBIM is poly[2-(2-pyridyl)-bibenzimidazole] and n = 3, 10 or 20. Electronic communication in the excited state is not efficient and upon optical excitation dual emission is observed, i.e., both the polymer backbone and the metal centres emit. Coupling the ruthenium moiety to the imidazole backbone results in a red shift of approximately 50 nm in the emission spectrum. Luminescent lifetimes of up to 120 ns were also recorded. Cyclic voltammetry was also utilized to illustrate the distance dependence of the electron hopping rates between adjacent metal centres with ground state communication reduced by up to an order of magnitude compared to previously reported results when the metal to backbone ratio was not altered. DCT and De values of up to 3.96 x 10-10 and 5.32 x 10-10 cm2S-1 were observed with corresponding conductivity values of up to 2.34 x 10-8 Scm-1
Some comments on graduate training for engineers
QUESTIONING the value and adequacy of postgraduate engineering courses as commonly conducted, L. W. W. Morrow in an article in Electrical Engineering for March 1939, pages 118–22, called for a program of investigation of postgraduate training. Solicited comments of some representative industrialists and educators are presented here
Evidence for directional selection at a novel major histocompatibility class I marker in wild common frogs (Rana temporaria) exposed to a viral pathogen (Ranavirus).
(c) 2009 Teacher et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Whilst the Major Histocompatibility Complex (MHC) is well characterized in the anuran Xenopus, this region has not previously been studied in another popular model species, the common frog (Rana temporaria). Nor, to date, have there been any studies of MHC in wild amphibian host-pathogen systems. We characterise an MHC class I locus in the common frog, and present primers to amplify both the whole region, and specifically the antigen binding region. As no more than two expressed haplotypes were found in over 400 clones from 66 individuals, it is likely that there is a single class I locus in this species. This finding is consistent with the single class I locus in Xenopus, but contrasts with the multiple loci identified in axolotls, providing evidence that the diversification of MHC class I into multiple loci likely occurred after the Caudata/Anura divergence (approximately 350 million years ago) but before the Ranidae/Pipidae divergence (approximately 230 mya). We use this locus to compare wild populations of common frogs that have been infected with a viral pathogen (Ranavirus) with those that have no history of infection. We demonstrate that certain MHC supertypes are associated with infection status (even after accounting for shared ancestry), and that the diseased populations have more similar supertype frequencies (lower F(ST)) than the uninfected. These patterns were not seen in a suite of putatively neutral microsatellite loci. We interpret this pattern at the MHC locus to indicate that the disease has imposed selection for particular haplotypes, and hence that common frogs may be adapting to the presence of Ranavirus, which currently kills tens of thousands of amphibians in the UK each year
One-and-a-half quantum de Finetti theorems
We prove a new kind of quantum de Finetti theorem for representations of the
unitary group U(d). Consider a pure state that lies in the irreducible
representation U_{mu+nu} for Young diagrams mu and nu. U_{mu+nu} is contained
in the tensor product of U_mu and U_nu; let xi be the state obtained by tracing
out U_nu. We show that xi is close to a convex combination of states Uv, where
U is in U(d) and v is the highest weight vector in U_mu. When U_{mu+nu} is the
symmetric representation, this yields the conventional quantum de Finetti
theorem for symmetric states, and our method of proof gives near-optimal bounds
for the approximation of xi by a convex combination of product states. For the
class of symmetric Werner states, we give a second de Finetti-style theorem
(our 'half' theorem); the de Finetti-approximation in this case takes a
particularly simple form, involving only product states with a fixed spectrum.
Our proof uses purely group theoretic methods, and makes a link with the
shifted Schur functions. It also provides some useful examples, and gives some
insight into the structure of the set of convex combinations of product states.Comment: 14 pages, 3 figures, v4: minor additions (including figures),
published versio
- …
