684 research outputs found
Disruption of the GDP-mannose synthesis pathway in Streptomyces coelicolor results in antibiotic hyper-susceptible phenotypes
Actinomycete bacteria use polyprenol phosphate mannose as a lipid linked sugar donor for extra-cytoplasmic glycosyl transferases that transfer mannose to cell envelope polymers, including glycoproteins and glycolipids. We showed recently that strains of Streptomyces coelicolor with mutations in the gene ppm1 encoding polyprenol phosphate mannose synthase were both resistant to phage φC31 and have greatly increased susceptibility to antibiotics that mostly act on cell wall biogenesis. Here we show that mutations in the genes encoding enzymes that act upstream of Ppm1 in the polyprenol phosphate mannose synthesis pathway can also confer phage resistance and antibiotic hyper-susceptibility. GDP-mannose is a substrate for Ppm1 and is synthesised by GDP-mannose pyrophosphorylase (GMP; ManC) which uses GTP and mannose-1-phosphate as substrates. Phosphomannomutase (PMM; ManB) converts mannose-6-phosphate to mannose-1-phosphate. S. coelicolor strains with knocked down GMP activity or with a mutation in sco3028 encoding PMM acquire phenotypes that resemble those of the ppm1-mutants i.e. φC31 resistant and susceptible to antibiotics. Differences in the phenotypes of the strains were observed, however. While the ppm1-strains have a small colony phenotype, the sco3028 :: Tn5062 mutants had an extremely small colony phenotype indicative of an even greater growth defect. Moreover we were unable to generate a strain in which GMP activity encoded by sco3039 and sco4238 is completely knocked out, indicating that GMP is also an important enzyme for growth. Possibly GDP-mannose is at a metabolic branch point that supplies alternative nucleotide sugar donors
Streptomyces coelicolor strains lacking polyprenol phosphate mannose synthase and protein O-mannosyl transferase are hyper-susceptible to multiple antibiotics
Polyprenol phosphate mannose (PPM) is a lipid-linked sugar donor used by extra-cytoplasmic glycosyl tranferases in bacteria. PPM is synthesiszed by polyprenol phosphate mannose synthase, Ppm1, and in most Actinobacteria is used as the sugar donor for protein O-mannosyl transferase, Pmt, in protein glycosylation. Ppm1 and Pmt have homologues in yeasts and humans, where they are required for protein O-mannosylation. Actinobacteria also use PPM for lipoglycan biosynthesis. Here we show that ppm1 mutants of Streptomyces coelicolor have increased susceptibility to a number of antibiotics that target cell wall biosynthesis. The pmt mutants also have mildly increased antibiotic susceptibilities, in particular to β-lactams and vancomycin. Despite normal induction of the vancomycin gene cluster, vanSRJKHAX, the pmt and ppm1 mutants remained highly vancomycin sensitive indicating that the mechanism of resistance is blocked post-transcriptionally. Differential RNA expression analysis indicated that catabolic pathways were downregulated and anabolic ones upregulated in the ppm1 mutant compared to the parent or complemented strains. Of note was the increase in expression of fatty acid biosynthetic genes in the ppm1-mutant. A change in lipid composition was confirmed using Raman spectroscopy, which showed that the ppm1-mutant had a greater relative proportion of unsaturated fatty acids compared to the parent or the complemented mutant. Taken together, these data suggest that an inability to synthesize PPM (ppm1) and loss of the glycoproteome (pmt-mutant) can detrimentally affect membrane or cell envelope functions leading to loss of intrinsic and, in the case of vancomycin, acquired antibiotic resistance
The HIPASS Catalogue - II. Completeness, Reliability, and Parameter Accuracy
The HI Parkes All Sky Survey (HIPASS) is a blind extragalactic HI 21-cm
emission line survey covering the whole southern sky from declination -90 to
+25. The HIPASS catalogue (HICAT), containing 4315 HI-selected galaxies from
the region south of declination +2, is presented in Meyer et al. (2004a, Paper
I). This paper describes in detail the completeness and reliability of HICAT,
which are calculated from the recovery rate of synthetic sources and follow-up
observations, respectively. HICAT is found to be 99 per cent complete at a peak
flux of 84 mJy and an integrated flux of 9.4 Jy km/s. The overall reliability
is 95 per cent, but rises to 99 per cent for sources with peak fluxes >58 mJy
or integrated flux > 8.2 Jy km/s. Expressions are derived for the uncertainties
on the most important HICAT parameters: peak flux, integrated flux, velocity
width, and recessional velocity. The errors on HICAT parameters are dominated
by the noise in the HIPASS data, rather than by the parametrization procedure.Comment: Accepted for publication in MNRAS. 12 pages, 11 figures. Paper with
higher resolution figures can be downloaded from http://hipass.aus-vo.or
Civil Procedure: Analysis of 1977-78 Seventh Circuit Opinions Addressing Attorney-Client Relationship, Class Action Problems, Magistrates\u27 Jurisdiction, Statute of Limitations and Indispensable Parties
Civil Procedure: Analysis of 1977-78 Seventh Circuit Opinions Addressing Attorney-Client Relationship, Class Action Problems, Magistrates\u27 Jurisdiction, Statute of Limitations and Indispensable Parties
Salivary Cortisone Reflects Cortisol Exposure Under Physiological Conditions and After Hydrocortisone
Knowledge Transfer between UK Universities and Business
Abstract In this paper, knowledge transfer between universities and business in the U
- …
