575 research outputs found

    Prevention for a Healthier California: Investments in Disease Prevention Yield Significant Savings, Stronger Communities

    Get PDF
    Estimates how much the state and the nation could save in healthcare costs by investing in disease prevention through community programs that increase physical activity, improve nutrition, and reduce tobacco use. Provides examples of prevention efforts

    Sestrin2 is a leucine sensor for the mTORC1 pathway

    Get PDF
    Leucine is a proteogenic amino acid that also regulates many aspects of mammalian physiology, in large part by activating the mTOR complex 1 (mTORC1) protein kinase, a master growth controller. Amino acids signal to mTORC1 through the Rag guanosine triphosphatases (GTPases). Several factors regulate the Rags, including GATOR1, aGTPase-activating protein; GATOR2, a positive regulator of unknown function; and Sestrin2, a GATOR2-interacting protein that inhibits mTORC1 signaling. We find that leucine, but not arginine, disrupts the Sestrin2-GATOR2 interaction by binding to Sestrin2 with a dissociation constant of 20 micromolar, which is the leucine concentration that half-maximally activates mTORC1. The leucine-binding capacity of Sestrin2 is required for leucine to activate mTORC1 in cells. These results indicate that Sestrin2 is a leucine sensor for the mTORC1 pathway.United States. National Institutes of Health (R01CA103866)United States. National Institutes of Health (AI47389)United States. Department of Defense (W81XWH-07-0448)United States. National Institutes of Health (T32 GM007753)United States. National Institutes of Health (F30 CA189333)United States. National Institutes of Health (F31 CA180271

    The performance of human papillomavirus high-risk DNA testing in the screening and diagnostic settings.

    Get PDF
    OBJECTIVE: We sought to evaluate the performance of the human papillomavirus high-risk DNA test in patients 30 years and older. MATERIALS AND METHODS: Screening (n=835) and diagnosis (n=518) groups were defined based on prior Papanicolaou smear results as part of a clinical trial for cervical cancer detection. We compared the Hybrid Capture II (HCII) test result with the worst histologic report. We used cervical intraepithelial neoplasia (CIN) 2/3 or worse as the reference of disease. We calculated sensitivities, specificities, positive and negative likelihood ratios (LR+ and LR-), receiver operating characteristic (ROC) curves, and areas under the ROC curves for the HCII test. We also considered alternative strategies, including Papanicolaou smear, a combination of Papanicolaou smear and the HCII test, a sequence of Papanicolaou smear followed by the HCII test, and a sequence of the HCII test followed by Papanicolaou smear. RESULTS: For the screening group, the sensitivity was 0.69 and the specificity was 0.93; the area under the ROC curve was 0.81. The LR+ and LR- were 10.24 and 0.34, respectively. For the diagnosis group, the sensitivity was 0.88 and the specificity was 0.78; the area under the ROC curve was 0.83. The LR+ and LR- were 4.06 and 0.14, respectively. Sequential testing showed little or no improvement over the combination testing. CONCLUSIONS: The HCII test in the screening group had a greater LR+ for the detection of CIN 2/3 or worse. HCII testing may be an additional screening tool for cervical cancer in women 30 years and older

    The future of human nature: a symposium on the promises and challenges of the revolutions in genomics and computer science, April 10, 11, and 12, 2003

    Full text link
    This repository item contains a single issue of the Pardee Conference Series, a publication series that began publishing in 2006 by the Boston University Frederick S. Pardee Center for the Study of the Longer-Range Future. This was the Center's Symposium on the Promises and Challenges of the Revolutions in Genomics and Computer Science took place during April 10, 11, and 12, 2003. Co-organized by Charles DeLisi and Kenneth Lewes; sponsored by Boston University, the Frederick S. Pardee Center for the Study of the Longer-Range Future.This conference focused on scientific and technological advances in genetics, computer science, and their convergence during the next 35 to 250 years. In particular, it focused on directed evolution, the futures it allows, the shape of society in those futures, and the robustness of human nature against technological change at the level of individuals, groups, and societies. It is taken as a premise that biotechnology and computer science will mature and will reinforce one another. During the period of interest, human cloning, germ-line genetic engineering, and an array of reproductive technologies will become feasible and safe. Early in this period, we can reasonably expect the processing power of a laptop computer to exceed the collective processing power of every human brain on the planet; later in the period human/machine interfaces will begin to emerge. Whether such technologies will take hold is not known. But if they do, human evolution is likely to proceed at a greatly accelerated rate; human nature as we know it may change markedly, if it does not disappear altogether, and new intelligent species may well be created

    The future of human nature: a symposium on the promises and challenges of the revolutions in genomics and computer science, April 10, 11, and 12, 2003

    Full text link
    This repository item contains a single issue of the Pardee Conference Series, a publication series that began publishing in 2006 by the Boston University Frederick S. Pardee Center for the Study of the Longer-Range Future. This was the Center's Symposium on the Promises and Challenges of the Revolutions in Genomics and Computer Science took place during April 10, 11, and 12, 2003. Co-organized by Charles DeLisi and Kenneth Lewes; sponsored by Boston University, the Frederick S. Pardee Center for the Study of the Longer-Range Future.This conference focused on scientific and technological advances in genetics, computer science, and their convergence during the next 35 to 250 years. In particular, it focused on directed evolution, the futures it allows, the shape of society in those futures, and the robustness of human nature against technological change at the level of individuals, groups, and societies. It is taken as a premise that biotechnology and computer science will mature and will reinforce one another. During the period of interest, human cloning, germ-line genetic engineering, and an array of reproductive technologies will become feasible and safe. Early in this period, we can reasonably expect the processing power of a laptop computer to exceed the collective processing power of every human brain on the planet; later in the period human/machine interfaces will begin to emerge. Whether such technologies will take hold is not known. But if they do, human evolution is likely to proceed at a greatly accelerated rate; human nature as we know it may change markedly, if it does not disappear altogether, and new intelligent species may well be created

    Infectious Complications of Ventricular Assist Device Use in Children in the US: Data from the Pediatric Interagency Registry for Mechanical Circulatory Support (Pedimacs)

    Get PDF
    Background Infections are frequent in pediatric ventricular assist device (VAD) patients. In this study we aimed to describe infections in durable VAD patients reported to Pedimacs. Methods Durable VAD data from the Pedimacs registry (September 19, 2012 to December 31, 2015) were analyzed. Infections were described with standard descriptive statistics, Kaplan–Meier analysis and competing outcomes analysis. Results There were 248 implants in 222 patients, with a mean age and a median follow-up of 11 ± 6.4 years and 2.4 patient-months (<1 day to 2.6 years), respectively. Device types were pulsatile flow (PF) in 91 (41%) patients and continuous flow (CF) in 131 (59%) patients. PF patients were younger (4 ± 4 vs 14 ± 4 years; p < 0.0001) and were more likely to have congenital heart disease (25% vs 12%; p = 0.03), prior surgery (53% vs 26%; p < 0.0001) and prior extracorporeal membrane oxygenation (24% vs 7%; p = 0.0003). Infection accounted for 17% (96 of 564) of the reported adverse events (AEs). A non-device infection was most common (51%), followed by sepsis (24%), external pump component infection (20%) and internal pump component infection (5%). Most infections were bacterial (73%) and required intravenous therapy only (77%). The risk of infection in the constant phase was higher in patients with a history of prior infection and in patients with a history of a non-infectious major AEs. Survival was lower after infection only in CF patients (p = 0.008). Conclusions Infection was the most common AE after pediatric VAD implantation. Non-device infections were most common. The best predictor of a future infection was a past infection. CF patients have higher risk of death after an infection

    Primary cilia signaling mediates intraocular pressure sensation

    Get PDF
    Lowe syndrome is a rare X-linked congenital disease that presents with congenital cataracts and glaucoma, as well as renal and cerebral dysfunction. OCRL, an inositol polyphosphate 5-phosphatase, is mutated in Lowe syndrome. We previously showed that OCRL is involved in vesicular trafficking to the primary cilium. Primary cilia are sensory organelles on the surface of eukaryotic cells that mediate mechanotransduction in the kidney, brain, and bone. However, their potential role in the trabecular meshwork (TM) in the eye, which regulates intraocular pressure, is unknown. Here, we show that TM cells, which are defective in glaucoma, have primary cilia that are critical for response to pressure changes. Primary cilia in TM cells shorten in response to fluid flow and elevated hydrostatic pressure, and promote increased transcription of TNF-α, TGF-β, and GLI1 genes. Furthermore, OCRL is found to be required for primary cilia to respond to pressure stimulation. The interaction of OCRL with transient receptor potential vanilloid 4 (TRPV4), a ciliary mechanosensory channel, suggests that OCRL may act through regulation of this channel. A novel disease-causing OCRL allele prevents TRPV4-mediated calcium signaling. In addition, TRPV4 agonist GSK 1016790A treatment reduced intraocular pressure in mice; TRPV4 knockout animals exhibited elevated intraocular pressure and shortened cilia. Thus, mechanotransduction by primary cilia in TM cells is implicated in how the eye senses pressure changes and highlights OCRL and TRPV4 as attractive therapeutic targets for the treatment of glaucoma. Implications of OCRL and TRPV4 in primary cilia function may also shed light on mechanosensation in other organ systems

    The Role of Industry, Geography and Firm Heterogeneity in Credit Risk Diversification

    Get PDF
    In theory the potential for credit risk diversification for banks could be substantial. Portfolio diversification is driven broadly by two characteristics: the degree to which systematic risk factors are correlated with each other and the degree of dependence individual firms have to the different types of risk factors. We propose a model for exploring these dimensions of credit risk diversification: across industry sectors and across different countries or regions. We find that full firm-level parameter heterogeneity matters a great deal for capturing differences in simulated credit loss distributions. Imposing homogeneity results in overly skewed and fat-tailed loss distributions. These differences become more pronounced in the presence of systematic risk factor shocks: increased parameter heterogeneity greatly reduces shock sensitivity. Allowing for regional parameter heterogeneity seems to better approximate the loss distributions generated by the fully heterogeneous model than allowing just for industry heterogeneity. The regional model also exhibits less shock sensitivity

    Inhibition of BACH1 (FANCJ) helicase by backbone discontinuity is overcome by increased motor ATPase or length of loading strand

    Get PDF
    The BRCA1 associated C-terminal helicase (BACH1) associated with breast cancer has been implicated in double strand break (DSB) repair. More recently, BACH1 (FANCJ) has been genetically linked to the chromosomal instability disorder Fanconi Anemia (FA). Understanding the roles of BACH1 in cellular DNA metabolism and how BACH1 dysfunction leads to tumorigenesis requires a comprehensive investigation of its catalytic mechanism and molecular functions in DNA repair. In this study, we have determined that BACH1 helicase contacts with both the translocating and the non-translocating strands of the duplex are critical for its ability to track along the sugar phosphate backbone and unwind dsDNA. An increased motor ATPase of a BACH1 helicase domain variant (M299I) enabled the helicase to unwind the backbone-modified DNA substrate in a more proficient manner. Alternatively, increasing the length of the 5′ tail of the DNA substrate allowed BACH1 to overcome the backbone discontinuity, suggesting that BACH1 loading mechanism is critical for its ability to unwind damaged DNA molecules

    Preferential binding to elk-1 by sle-associated il10 risk allele upregulates il10 expression

    Get PDF
    Immunoregulatory cytokine interleukin-10 (IL-10) is elevated in sera from patients with systemic lupus erythematosus (SLE) correlating with disease activity. The established association of IL10 with SLE and other autoimmune diseases led us to fine map causal variant(s) and to explore underlying mechanisms. We assessed 19 tag SNPs, covering the IL10 gene cluster including IL19, IL20 and IL24, for association with SLE in 15,533 case and control subjects from four ancestries. The previously reported IL10 variant, rs3024505 located at 1 kb downstream of IL10, exhibited the strongest association signal and was confirmed for association with SLE in European American (EA) (P = 2.7×10−8, OR = 1.30), but not in non-EA ancestries. SNP imputation conducted in EA dataset identified three additional SLE-associated SNPs tagged by rs3024505 (rs3122605, rs3024493 and rs3024495 located at 9.2 kb upstream, intron 3 and 4 of IL10, respectively), and SLE-risk alleles of these SNPs were dose-dependently associated with elevated levels of IL10 mRNA in PBMCs and circulating IL-10 protein in SLE patients and controls. Using nuclear extracts of peripheral blood cells from SLE patients for electrophoretic mobility shift assays, we identified specific binding of transcription factor Elk-1 to oligodeoxynucleotides containing the risk (G) allele of rs3122605, suggesting rs3122605 as the most likely causal variant regulating IL10 expression. Elk-1 is known to be activated by phosphorylation and nuclear localization to induce transcription. Of interest, phosphorylated Elk-1 (p-Elk-1) detected only in nuclear extracts of SLE PBMCs appeared to increase with disease activity. Co-expression levels of p-Elk-1 and IL-10 were elevated in SLE T, B cells and monocytes, associated with increased disease activity in SLE B cells, and were best downregulated by ERK inhibitor. Taken together, our data suggest that preferential binding of activated Elk-1 to the IL10 rs3122605-G allele upregulates IL10 expression and confers increased risk for SLE in European Americans
    corecore