168 research outputs found

    Are We Vulnerable?

    Get PDF

    Proposed Revision of the National Gene Technology Scheme for Australia

    Get PDF
    Plant breeding was provided access to wider genetic variation through genetic modification (GM) of crops in the 1980s. This involved transfer of DNA between species, and introduction of new traits into domestic crops. Concerns were raised for the outcomes in food health and in the environment with GM crops, with the spectre of ‘Frankenstien’ foods and fear of the unknown. This led to widespread adoption of GM regulations based on the ‘Precautionary principle’ of safeguarding the risks to health and to the environment, even when scientific evidence was lacking to support these concerns. The Green lobby required GM foods to be safe for consumption, with no ill-effects over the long term and for many generations into the future. GM foods have proven safe for over two decades, and with benefits to crop productivity, pest and disease resistances, improved nutrition and tolerances of extreme climatic stresses. GM includes the new biotechnology of Genome Editing (GE), with targeted and precise changes to gene sites, and inter-specific transfer of genes from poorly accessible Crop Wild Relatives (CRW), for adaptation of crops to climate change. Food and fibre crops need to be exempt from GM regulations

    Geographical gradient of the <em>eIF4E</em> alleles conferring resistance to potyviruses in pea (<em>Pisum</em>) germplasm

    Get PDF
    <div><p>Background</p><p>The eukaryotic translation initiation factor 4E was shown to be involved in resistance against several potyviruses in plants, including pea. We combined our knowledge of pea germplasm diversity with that of the <i>eIF4E</i> gene to identify novel genetic diversity.</p><p>Methodology/Principal findings</p><p>Germplasm of 2803 pea accessions was screened for <i>eIF4E</i> intron 3 length polymorphism, resulting in the detection of four <i>eIF4E<sup>A-B-C-S</sup></i> variants, whose distribution was geographically structured. The <i>eIF4E<sup>A</sup></i> variant conferring resistance to the P1 PSbMV pathotype was found in 53 accessions (1.9%), of which 15 were landraces from India, Afghanistan, Nepal, and 7 were from Ethiopia. A newly discovered variant, <i>eIF4E<sup>B</sup></i>, was present in 328 accessions (11.7%) from Ethiopia (29%), Afghanistan (23%), India (20%), Israel (25%) and China (39%). The <i>eIF4E<sup>C</sup></i> variant was detected in 91 accessions (3.2% of total) from India (20%), Afghanistan (33%), the Iberian Peninsula (22%) and the Balkans (9.3%). The <i>eIF4E<sup>S</sup></i> variant for susceptibility predominated as the wild type. Sequencing of 73 samples, identified 34 alleles at the whole gene, 26 at cDNA and 19 protein variants, respectively. Fifteen alleles were virologically tested and 9 alleles (<i>eIF4E<sup>A-1-2-3-4-5-6-7</sup></i>, <i>eIF4E<sup>B-1</sup></i>, <i>eIF4E<sup>C-2</sup></i>) conferred resistance to the P1 PSbMV pathotype.</p><p>Conclusions/Significance</p><p>This work identified novel <i>eIF4E</i> alleles within geographically structured pea germplasm and indicated their independent evolution from the susceptible <i>eIF4E<sup>S1</sup></i> allele. Despite high variation present in wild <i>Pisum</i> accessions, none of them possessed resistance alleles, supporting a hypothesis of distinct mode of evolution of resistance in wild as opposed to crop species. The Highlands of Central Asia, the northern regions of the Indian subcontinent, Eastern Africa and China were identified as important centers of pea diversity that correspond with the diversity of the pathogen. The series of alleles identified in this study provides the basis to study the co-evolution of potyviruses and the pea host.</p></div

    Harmonized Multisite MRI-Based Quantification of Human Liver Fat and Stiffness: A Pilot Study

    Get PDF
    Background: Nonalcoholic fatty liver disease (NAFLD) is a leading cause of end-stage liver disease. NAFLD diagnosis and follow-up relies on a combination of clinical data, liver imaging, and/or liver biopsy. However, intersite imaging differences impede diagnostic consistency and reduce the repeatability of the multisite clinical trials necessary to develop effective treatments. Purpose/Hypothesis: The goal of this pilot study was to harmonize commercially available 3 T magnetic resonance imaging (MRI) measurements of liver fat and stiffness in human participants across academic sites and MRI vendors. Study Type: Cohort. Subjects: Four community-dwelling adults with obesity. Field strength/Sequence: 1.5 and 3 T, multiecho 3D imaging, PRESS, and GRE. Assessment: Harmonized proton density fat fraction (PDFF) and magnetic resonance spectroscopy (MRS) protocols were used to quantify the FF of synthetic phantoms and human participants with obesity using standard acquisition parameters at four sites that had four different 3 T MRI instruments. In addition, a harmonized magnetic resonance elastography (MRE) protocol was used to quantify liver stiffness among participants at two different sites at 1.5 and 3 T field strengths. Data were sent to a single data coordinating site for postprocessing. Statistical Tests: Linear regression in MATLAB, ICC analyses using SAS 9.4, one-sided 95% confidence intervals for the ICC. Results: PDFF and MRS FF measurements were highly repeatable among sites in both humans and phantoms. MRE measurements of liver stiffness in three individuals at two sites using one 1.5 T and one 3 T instrument showed repeatability that was high although lower than that of MRS and PDFF. Conclusions: We demonstrated harmonization of PDFF, MRS, and MRE-based quantification of liver fat and stiffness through synthetic phantoms, traveling participants, and standardization of postprocessing analysis. Multisite MRI harmonization could contribute to multisite clinical trials assessing the efficacy of interventions and therapy for NAFLD. Level of Evidence: 2. Technical Efficacy Stage: 2

    Legume Crops Phylogeny and Genetic Diversity for Science and Breeding

    Get PDF
    Economically, legumes (Fabaceae) represent the second most important family of crop plants after the grass family, Poaceae. Grain legumes account for 27% of world crop production and provide 33% of the dietary protein consumed by humans, while pasture and forage legumes provide vital part of animal feed. Fabaceae, the third largest family of flowering plants, has traditionally been divided into the following three subfamilies: Caesalpinioideae, Mimosoideae, and Papilionoideae, all together with 800 genera and 20,000 species. The latter subfamily contains most of the major cultivated food and feed crops. Among the grain legumes are some of mankind's earliest crop plants, whose domestication parallelled that of cereals: Soybean in China; faba bean, lentil, chickpea and pea in the Fertile Crescent of the Near East; cowpeas and bambara groundnut in Africa; soybean and mungbeans in East Asia; pigeonpea and the grams in South Asia; and common bean, lima bean, scarlet runner bean, tepary bean and lupin in Central and South America. The importance of legumes is evidenced by their high representation in ex situ germplasm collections, with more than 1,000,000 accessions worldwide. A detailed knowledge of the phylogenetic relationships of the Fabaceae is essential for understanding the origin and diversification of this economically and ecologically important family of angiosperms. This review aims to combine the phylogenetic and genetic diversity approaches to better illustrate the origin, domestication history and preserved germplasm of major legume crops from 13 genera of six tribes and to indicate further potential both for science and agriculture.</p

    Lack of Support for the Association between GAD2 Polymorphisms and Severe Human Obesity

    Get PDF
    The demonstration of association between common genetic variants and chronic human diseases such as obesity could have profound implications for the prediction, prevention, and treatment of these conditions. Unequivocal proof of such an association, however, requires independent replication of initial positive findings. Recently, three (−243 A>G, +61450 C>A, and +83897 T>A) single nucleotide polymorphisms (SNPs) within glutamate decarboxylase 2 (GAD2) were found to be associated with class III obesity (body mass index > 40 kg/m(2)). The association was observed among 188 families (612 individuals) segregating the condition, and a case-control study of 575 cases and 646 lean controls. Functional data supporting a pathophysiological role for one of the SNPs (−243 A>G) were also presented. The gene GAD2 encodes the 65-kDa subunit of glutamic acid decarboxylase—GAD65. In the present study, we attempted to replicate this association in larger groups of individuals, and to extend the functional studies of the −243 A>G SNP. Among 2,359 individuals comprising 693 German nuclear families with severe, early-onset obesity, we found no evidence for a relationship between the three GAD2 SNPs and obesity, whether SNPs were studied individually or as haplotypes. In two independent case-control studies (a total of 680 class III obesity cases and 1,186 lean controls), there was no significant relationship between the −243 A>G SNP and obesity (OR = 0.99, 95% CI 0.83–1.18, p = 0.89) in the pooled sample. These negative findings were recapitulated in a meta-analysis, incorporating all published data for the association between the −243G allele and class III obesity, which yielded an OR of 1.11 (95% CI 0.90–1.36, p = 0.28) in a total sample of 1,252 class III obese cases and 1,800 lean controls. Moreover, analysis of common haplotypes encompassing the GAD2 locus revealed no association with severe obesity in families with the condition. We also obtained functional data for the −243 A>G SNP that does not support a pathophysiological role for this variant in obesity. Potential confounding variables in association studies involving common variants and complex diseases (low power to detect modest genetic effects, overinterpretation of marginal data, population stratification, and biological plausibility) are also discussed in the context of GAD2 and severe obesity
    corecore