35 research outputs found
Transient electrically detected magnetic resonance spectroscopy applied to organic solar cells
The influence of light-induced paramagnetic states on the photocurrent
generated by polymer:fullerene solar cells is studied using spin-sensitive
techniques in combination with laser-flash excitation. For this purpose, we
developed a setup that allows for simultaneous detection of transient electron
paramagnetic resonance as well as transient electrically detected magnetic
resonance (trEDMR) signals from fully processed and encapsulated solar cells.
Combining both techniques provides a direct link between photoinduced triplet
excitons, charge transfer states, and free charge carriers as well as their
influence on the photocurrent generated by organic photovoltaic devices. Our
results obtained from solar cells based on poly(3-hexylthiophene) as electron
donor and a fullerene-based electron acceptor show that the resonant signals
observed in low-temperature (T = 80 K) trEDMR spectra can be attributed to
positive polarons in the polymer as well as negative polarons in the fullerene
phase, indicating that both centers are involved in spin-dependent processes
that directly influence the photocurrent
Impact of morphology on polaron delocalization in a semicrystalline conjugated polymer
We investigate the delocalization of holes in the semicrystalline conjugated
polymer poly(2,5-bis(3-alkylthiophene-2-yl)thieno[3,2-b]thiophene) (PBTTT) by
directly measuring the hyperfine coupling between photogenerated polarons and
bound nuclear spins using electron nuclear double resonance spectroscopy. An
extrapolation of the corresponding oligomer spectra reveals that charges tend
to delocalize over 4.0–4.8 nm with delocalization strongly dependent on
molecular order and crystallinity of the PBTTT polymer thin films. Density
functional theory calculations of hyperfine couplings confirm that long-range
corrected functionals appropriately describe the change in coupling strength
with increasing oligomer size and agree well with the experimentally measured
polymer limit. Our discussion presents general guidelines illustrating the
various pitfalls and opportunities when deducing polaron localization lengths
from hyperfine coupling spectra of conjugated polymers
Correlation of structure, optical properties and charge transport in a conjugated naphtalendiimide-bithiophene copolymer with outstanding electron mobility
Organische Halbleiter besitzen neue, bemerkenswerte Materialeigenschaften, die sie für die grundlegende Forschung wie auch aktuelle technologische Entwicklung (bsw. org. Leuchtdioden, org. Solarzellen) interessant werden lassen. Aufgrund der starken konformative Freiheit der konjugierten Polymerketten führt die Vielzahl der möglichen Anordnungen und die schwache intermolekulare Wechselwirkung für gewöhnlich zu geringer struktureller Ordnung im Festkörper. Die Morphologie hat gleichzeitig direkten Einfluss auf die elektronische Struktur der organischen Halbleiter, welches sich meistens in einer deutlichen Reduktion der Ladungsträgerbeweglichkeit gegenüber den anorganischen Verwandten zeigt. So stellt die Beweglichkeit der Ladungen im Halbleiter einen der limitierenden Faktoren für die Leistungsfähigkeit bzw. den Wirkungsgrad von funktionellen organischen Bauteilen dar. Im Jahr 2009 wurde ein neues auf Naphthalindiimid und Bithiophen basierendes Dornor/Akzeptor Copolymer vorgestellt [P(NDI2OD‑T2)], welches sich durch seine außergewöhnlich hohe Ladungsträgermobilität auszeichnet. In dieser Arbeit wird die Ladungsträgermobilität in P(NDI2OD‑T2) bestimmt, und der Transport durch eine geringe energetischer Unordnung charakterisiert. Obwohl dieses Material zunächst als amorph beschrieben wurde zeigt eine detaillierte Analyse der optischen Eigenschaften von P(NDI2OD‑T2), dass bereits in Lösung geordnete Vorstufen supramolekularer Strukturen (Aggregate) existieren. Quantenchemische Berechnungen belegen die beobachteten spektralen Änderungen. Mithilfe der NMR-Spektroskopie kann die Bildung der Aggregate unabhängig von optischer Spektroskopie bestätigt werden. Die Analytische Ultrazentrifugation an P(NDI2OD‑T2) Lösungen legt nahe, dass sich die Aggregation innerhalb der einzelnen Ketten unter Reduktion des hydrodynamischen Radius vollzieht. Die Ausbildung supramolekularen Strukturen nimmt auch eine signifikante Rolle bei der Filmbildung ein und verhindert gleichzeitig die Herstellung amorpher P(NDI2OD‑T2) Filme. Durch chemische Modifikation der P(NDI2OD‑T2)-Kette und verschiedener Prozessierungs-Methoden wurde eine Änderung des Kristallinitätsgrades und gleichzeitig der Orientierung der kristallinen Domänen erreicht und mittels Röntgenbeugung quantifiziert. In hochauflösenden Elektronenmikroskopie-Messungen werden die Netzebenen und deren Einbettung in die semikristallinen Strukturen direkt abgebildet. Aus der Kombination der verschiedenen Methoden erschließt sich ein Gesamtbild der Nah- und Fernordnung in P(NDI2OD‑T2). Über die Messung der Elektronenmobilität dieser Schichten wird die Anisotropie des Ladungstransports in den kristallographischen Raumrichtungen von P(NDI2OD‑T2) charakterisiert und die Bedeutung der intramolekularen Wechselwirkung für effizienten Ladungstransport herausgearbeitet. Gleichzeitig wird deutlich, wie die Verwendung von größeren und planaren funktionellen Gruppen zu höheren Ladungsträgermobilitäten führt, welche im Vergleich zu klassischen semikristallinen Polymeren weniger sensitiv auf die strukturelle Unordnung im Film sind.Organic semiconductors are in the focus of recent research and technological development (eg. for organic light-emitting diodes and solar cells) due to their specific and outstanding material properties. The strong conformational freedom of conjugated polymer chains usually leads to a large number of possible geometric arrangements while weak intermolecular interactions additionally lead to poor structural order in the solid state. At the same time the morphology of those systems has direct influence on the electronic structure of the organic semiconductor which is accompanied by a significant reduction of the charge carrier mobility in contrast to their inorganic counterparts. In that way the transport of charges within the semiconductor represents one of the main limiting factors regarding the performance and efficiency of functional organic devices. In 2009 Facchetti and coworkers presented a novel conjugated donor/acceptor copolymer based on naphthalene diimide and bithiophene [P(NDI2OD‑T2)] which was characterized by an outstanding charge carrier mobility. In this work the mobility of electrons and holes in the bulk of P(NDI2OD‑T2) is determined by single carrier devices and the time-of-flight technique. The results imply a low energetic disorder in these polymer layers. While the material was initially expected to be mainly amorphous, a detailed study of the photophysical properties of P(NDI2OD‑T2) shows that precursors of supramolecular assemblies (aggregates) are already formed in polymer solution. Quantum-chemical calculations support the occurring optical changes. NMR spectroscopy was applied to independently prove the formation of chain aggregates in commonly used organic solvents. The investigation of P(NDI2OD‑T2) solutions by analytical ultracentrifugation implies that aggregation mainly proceeds within single polymer chains by reduction of the hydrodynamic radius. To understand the influence of the chemical structure, pre-aggregation and crystal packing of conventional regioregular P(NDI2OD-T2) on the charge transport, the corresponding regioirregular polymer RI-P(NDI2OD-T2) was synthesized. By combining optical, X-ray, and transmission electron microscopy data, a quantitatively characterization of the aggregation, crystallization, and backbone orientation of all of the polymer films was possible, which was then correlated to the electron mobilities in electron-only diodes. The anisotropy of the charge transport along the different crystallographic directions is demonstrated and how the mobility depends on π-stacking but is insensitive to the degree or coherence of lamellar stacking. The comparison between the regioregular and regioirregular polymers also shows how the use of large planar functional groups leads to improved charge transport, with mobilities that are less affected by chemical and structural disorder with respect to classic semicrystalline polymers such as poly(3-hexylthiophene)
Reliable electron-only devices and electron transport in n-type polymers
Current-voltage analysis of single-carrier transport is a popular method for the determination of charge carrier mobilities in organic semiconductors. Although in widespread use for the analysis of hole transport, only a few reports can be found where the method was applied to electron transport. Here, we summarize the experimental difficulties related to the metal electrode leakage currents and nonlinear differential resistance (NDR) effects and explain their origin. We present a modified preparation technique for the metal electrodes and show that it significantly increases the reliability of such measurements. It allows to produce test devices with low leakage currents and without NDR even for thin organic layers. Metal oxides were often discussed as a possible cause of NDR. Our measurements on forcibly oxidized metal electrodes demonstrate that oxide layers are not exclusively responsible for NDR effects. We present electron transport data for two electron-conducting polymers often applied in all-polymer solar cells for a large variety of layer thicknesses and temperatures. The results can be explained by established exponential trapping models
Charge transport and recombination in bulk heterojunction solar cells containing a dicyanoimidazole-based molecular acceptor
Transient electrically detected magnetic resonance spectroscopy applied to organic solar cells
Surface Structure of Semicrystalline Naphthalene Diimide–Bithiophene Copolymer Films Studied with Atomic Force Microscopy
Spatial Orientation and Order of Structure-Defining Subunits in Thin Films of a High Mobility n-Type Copolymer
Charge Delocalization in Oligomers of Poly(2,5-bis(3-alkylthiophene-2-yl)thieno[3,2‑<i>b</i>]thiophene) (PBTTT)
We investigate theoretically
charge delocalization in radical cations,
i.e., positive polarons, formed on oligomer chains of poly(2,5-bis(3-alkylthiophene-2-yl)thieno[3,2-<i>b</i>]thiophene) (PBTTT). We use nonempirically tuned range-separated
density functionals (TRS-DFT), including LC-ωPBE, LC-BLYP, and
ωB97XD. We consider the evolution with oligomer length of the
molecular geometric and electronic structures, optical absorption
features, and spin densities. The TRS-DFT results indicate that a
positive polaron can delocalize ideally over some 10 thiophene rings
when the backbone is nonplanar and up to 14 rings for a backbone forced
to be completely planar. Interestingly, up to six polarons can coexist
side-by-side in a hexamer (which contains 24 thiophene rings), which
is consistent with the highest degrees of doping (oxidation) experimentally
achievable in polythiophene derivatives
