250 research outputs found

    Genome sequence of human papillomavirus type 20, strain HPV-20/Lancaster/2015

    Get PDF
    The genome sequence of human papillomavirus type 20 (HPV-20; family Papillomaviridae, genus Betapapillomavirus, species Betapapillomavirus 1, type 20) was assembled by deep sequencing from nasopharyngeal swabs. The assembled genome is 0.37% divergent over its full length from the single complete genome of HPV-20 in GenBank (U31778). We named the strain HPV-20/Lancaster/2015

    Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: the challenge ahead.

    Get PDF
    Lifestyle factors are responsible for a considerable portion of cancer incidence worldwide, but credible estimates from the World Health Organization and the International Agency for Research on Cancer (IARC) suggest that the fraction of cancers attributable to toxic environmental exposures is between 7% and 19%. To explore the hypothesis that low-dose exposures to mixtures of chemicals in the environment may be combining to contribute to environmental carcinogenesis, we reviewed 11 hallmark phenotypes of cancer, multiple priority target sites for disruption in each area and prototypical chemical disruptors for all targets, this included dose-response characterizations, evidence of low-dose effects and cross-hallmark effects for all targets and chemicals. In total, 85 examples of chemicals were reviewed for actions on key pathways/mechanisms related to carcinogenesis. Only 15% (13/85) were found to have evidence of a dose-response threshold, whereas 59% (50/85) exerted low-dose effects. No dose-response information was found for the remaining 26% (22/85). Our analysis suggests that the cumulative effects of individual (non-carcinogenic) chemicals acting on different pathways, and a variety of related systems, organs, tissues and cells could plausibly conspire to produce carcinogenic synergies. Additional basic research on carcinogenesis and research focused on low-dose effects of chemical mixtures needs to be rigorously pursued before the merits of this hypothesis can be further advanced. However, the structure of the World Health Organization International Programme on Chemical Safety 'Mode of Action' framework should be revisited as it has inherent weaknesses that are not fully aligned with our current understanding of cancer biology

    Genome Sequence of Human Papillomavirus 23 Strain HPV-23/Lancaster/2015

    Get PDF
    The genome of human papillomavirus type 23 (HPV-23; family Papillomaviridae, genus Betapapillomavirus, species Betapapillomavirus 2, type 23) was assembled by deep sequencing from nasopharyngeal swabs. The assembled genome is 2.7% divergent over its full length from the single complete genome of HPV-23 in GenBank (accession no. U31781). We named the strain HPV-23/Lancaster/201

    Genome Sequence of Human Rhinovirus A22, Strain Lancaster/2015

    Get PDF
    The genome of human rhinovirus A22 (HRV-A22) was assembled by deep sequencing RNA samples from nasopharyngeal swabs. The assembled genome is 8.7% divergent from the HRV-A22 reference strain over its full length, and it is only the second full-length genome sequence for HRV-A22. The new strain is designated strain HRV-A22/Lancaster/2015

    Nasopharyngeal metagenomic deep sequencing data, Lancaster, UK, 2014-2015

    Get PDF
    Nasopharyngeal swabs were taken from volunteers attending a general medical practice and a general hospital in Lancaster, UK, and at Lancaster University, in the winter of 2014–2015. 51 swabs were selected based on high RNA yield and allocated to deep sequencing pools as follows: patients with chronic obstructive pulmonary disease; asthmatics; adults with no respiratory symptoms; adults with feverish respiratory symptoms; adults with respiratory symptoms and presence of antibodies against influenza C; paediatric patients with respiratory symptoms (2 pools); adults with influenza C infection (2 pools), giving a total of 9 pools. Illumina sequencing was performed, with data yields per pool in the range of 345.6 megabases to 14 gigabases after removal of reads aligning to the human genome. The data were deposited in the Sequence Read Archive at NCBI, and constitute a resource for study of the viral, bacterial and fungal metagenome of the human nasopharynx in healthy and diseased states and comparison with other metagenomic studies on the human respiratory tract

    A Database Tool Integrating Genomic and Pharmacologic Data from Adrenocortical Carcinoma (ACC) Cell Lines, PDX, and Patient Samples

    Get PDF
    : Adrenocortical carcinoma (ACC) is a rare and highly heterogeneous disease with a notably poor prognosis due to significant challenges in diagnosis and treatment. Emphasising on the importance of precision medicine, there is an increasing need for comprehensive genomic resources alongside well-developed experimental models to devise personalized therapeutic strategies. We present ACC_CellMinerCDB, a substantive genomic and drug sensitivity database (available at https://discover.nci.nih.gov/acc_cellminercdb) comprising ACC cell lines, patient-derived xenografts, surgical samples, combined with responses to over 2,400 drugs examined by NCI and NCATS. This database exposes shared genomic pathways among ACC cell lines and surgical samples, thus authenticating the cell lines as research models. It also allows exploration of pertinent treatment markers such as MDR-1, SOAT1, MGMT, MMR and SLFN11, and introduces the potential to repurpose agents like temozolomide for ACC therapy. ACC_CellMinerCDB provides the foundation for exploring larger preclinical ACC models

    A Database Tool Integrating Genomic and Pharmacologic Data from Adrenocortical Carcinoma Cell Lines, PDX, and Patient Samples

    Get PDF
    Adrenocortical carcinoma (ACC) is a rare and highly heterogeneous disease with a notably poor prognosis due to significant challenges in diagnosis and treatment. Emphasizing on the importance of precision medicine, there is an increasing need for comprehensive genomic resources alongside well-developed experimental models to devise personalized therapeutic strategies. We present ACC_CellMinerCDB, a substantive genomic and drug sensitivity database (available at https://discover.nci.nih.gov/acc_cellminercdb) comprising ACC cell lines, patient-derived xenografts, surgical samples, and responses to more than 2,400 drugs examined by the NCI and National Center for Advancing Translational Sciences. This database exposes shared genomic pathways among ACC cell lines and surgical samples, thus authenticating the cell lines as research models. It also allows exploration of pertinent treatment markers such as MDR-1, SOAT1, MGMT, MMR, and SLFN11 and introduces the potential to repurpose agents like temozolomide for ACC therapy. ACC_CellMinerCDB provides the foundation for exploring larger preclinical ACC models. SIGNIFICANCE ACC_CellMinerCDB, a comprehensive database of cell lines, patient-derived xenografts, surgical samples, and drug responses, reveals shared genomic pathways and treatment-relevant markers in ACC. This resource offers insights into potential therapeutic targets and the opportunity to repurpose existing drugs for ACC therapy

    Influenza C in Lancaster, UK, in the winter of 2014-2015.

    Get PDF
    Influenza C is not included in the annual seasonal influenza vaccine, and has historically been regarded as a minor respiratory pathogen. However, recent work has highlighted its potential role as a cause of pneumonia in infants. We performed nasopharyngeal or nasal swabbing and/or serum sampling (n=148) in Lancaster, UK, over the winter of 2014-2015. Using enzyme-linked immunosorbent assay (ELISA), we obtain seropositivity of 77%. By contrast, only 2 individuals, both asymptomatic adults, were influenza C-positive by polymerase chain reaction (PCR). Deep sequencing of nasopharyngeal samples produced partial sequences for 4 genome segments in one of these patients. Bayesian phylogenetic analysis demonstrated that the influenza C genome from this individual is evolutionarily distant to those sampled in recent years and represents a novel genome constellation, indicating that it may be a product of a decades-old reassortment event. Although we find no evidence that influenza C was a significant respiratory pathogen during the winter of 2014-2015 in Lancaster, we confirm previous observations of seropositivity in the majority of the population

    Absence of N addition facilitates B cell development, but impairs immune responses

    Get PDF
    The programmed, stepwise acquisition of immunocompetence that marks the development of the fetal immune response proceeds during a period when both T cell receptor and immunoglobulin (Ig) repertoires exhibit reduced junctional diversity due to physiologic terminal deoxynucleotidyl transferase (TdT) insufficiency. To test the effect of N addition on humoral responses, we transplanted bone marrow from TdT-deficient (TdT−/−) and wild-type (TdT+/+) BALB/c mice into recombination activation gene 1-deficient BALB/c hosts. Mice transplanted with TdT−/− cells exhibited diminished humoral responses to the T-independent antigens α-1-dextran and (2,4,6-trinitrophenyl) hapten conjugated to AminoEthylCarboxymethyl-FICOLL, to the T-dependent antigens NP19CGG and hen egg lysozyme, and to Enterobacter cloacae, a commensal bacteria that can become an opportunistic pathogen in immature and immunocompromised hosts. An exception to this pattern of reduction was the T-independent anti-phosphorylcholine response to Streptococcus pneumoniae, which is normally dominated by the N-deficient T15 idiotype. Most of the humoral immune responses in the recipients of TdT−/− bone marrow were impaired, yet population of the blood with B and T cells occurred more rapidly. To further test the effect of N-deficiency on B cell and T cell population growth, transplanted TdT-sufficient and -deficient BALB/c IgMa and congenic TdT-sufficient CB17 IgMb bone marrow were placed in competition. TdT−/− cells demonstrated an advantage in populating the bone marrow, the spleen, and the peritoneal cavity. TdT deficiency, which characterizes fetal lymphocytes, thus appears to facilitate filling both central and peripheral lymphoid compartments, but at the cost of altered responses to a broad set of antigens
    corecore