76 research outputs found
Recommended from our members
Determination of critical length scales for corrosion processes using microelectroanalytical techniques.
A key factor in our ability to produce and predict the stability of metal-based macro- to nano-scale structures and devices is a fundamental understanding of the localized nature of corrosion. Corrosion processes where physical dimensions become critical in the degradation process include localized corrosion initiation in passivated metals, microgalvanic interactions in metal alloys, and localized corrosion in structurally complex materials like nanocrystalline metal films under atmospheric and inundated conditions. This project focuses on two areas of corrosion science where a fundamental understanding of processes occurring at critical dimensions is not currently available. Sandia will study the critical length scales necessary for passive film breakdown in the inundated aluminum (Al) system and the chemical processes and transport in ultra-thin water films relevant to the atmospheric corrosion of nanocrystalline tungsten (W) films. Techniques are required that provide spatial information without significantly perturbing or masking the underlying relationships. Al passive film breakdown is governed by the relationship between area of the film sampled and its defect structure. We will combine low current measurements with microelectrodes to study the size scale required to observe a single initiation event and record electrochemical breakdown events. The resulting quantitative measure of stability will be correlated with metal grain size, secondary phase size and distribution to understand which metal properties control stability at the macro- and nano-scale. Mechanisms of atmospheric corrosion on W are dependent on the physical dimensions and continuity of adsorbed water layers as well as the chemical reactions that take place in this layer. We will combine electrochemical and scanning probe microscopic techniques to monitor the chemistry and resulting material transport in these thin surface layers. A description of the length scales responsible for driving the corrosion of the nanocrystalline metal films will be developed. The techniques developed and information derived from this work will be used to understand and predict degradation processes in microelectronic and microsystem devices critical to Sandia's mission
eIF4GI links nutrient sensing by mTOR to cell proliferation and inhibition of autophagy
Translation initiation factors have complex functions in cells that are not yet understood. We show that depletion of initiation factor eIF4GI only modestly reduces overall protein synthesis in cells, but phenocopies nutrient starvation or inhibition of protein kinase mTOR, a key nutrient sensor. eIF4GI depletion impairs cell proliferation, bioenergetics, and mitochondrial activity, thereby promoting autophagy. Translation of mRNAs involved in cell growth, proliferation, and bioenergetics were selectively inhibited by reduction of eIF4GI, as was the mRNA encoding Skp2 that inhibits p27, whereas catabolic pathway factors were increased. Depletion or overexpression of other eIF4G family members did not recapitulate these results. The majority of mRNAs that were translationally impaired with eIF4GI depletion were excluded from polyribosomes due to the presence of multiple upstream open reading frames and low mRNA abundance. These results suggest that the high levels of eIF4GI observed in many breast cancers might act to specifically increase proliferation, prevent autophagy, and release tumor cells from control by nutrient sensing
Inverse correlation between TP53 gene status and PD-L1 protein levels in a melanoma cell model depends on an IRF1/SOX10 regulatory axis
BACKGROUND: PD-L1 expression on cancer cells is an important mechanism of tumor immune escape, and immunotherapy targeting the PD-L1/PD1 interaction is a common treatment option for patients with melanoma. However, many patients do not respond to treatment and novel predictors of response are emerging. One suggested modifier of PD-L1 is the p53 pathway, although the relationship of p53 pathway function and activation is poorly understood.METHODS: The study was performed on human melanoma cell lines with various p53 status. We investigated PD-L1 and proteins involved in IFNγ signaling by immunoblotting and mRNA expression, as well as membrane expression of PD-L1 by flow cytometry. We evaluated differences in the ability of NK cells to recognize and kill target tumor cells on the basis of p53 status. We also investigated the influence of proteasomal degradation and protein half-life, IFNγ signaling and p53 activation on biological outcomes, and performed bioinformatic analysis using available data for melanoma cell lines and melanoma patients.RESULTS: We demonstrate that p53 status changes the level of membrane and total PD-L1 protein through IRF1 regulation and show that p53 loss influences the recently discovered SOX10/IRF1 regulatory axis. Bioinformatic analysis identified a dependency of SOX10 on p53 status in melanoma, and a co-regulation of immune signaling by both transcription factors. However, IRF1/PD-L1 regulation by p53 activation revealed complicated regulatory mechanisms that alter IRF1 mRNA but not protein levels. IFNγ activation revealed no dramatic differences based on TP53 status, although dual p53 activation and IFNγ treatment confirmed a complex regulatory loop between p53 and the IRF1/PD-L1 axis.CONCLUSIONS: We show that p53 loss influences the level of PD-L1 through IRF1 and SOX10 in an isogenic melanoma cell model, and that p53 loss affects NK-cell cytotoxicity toward tumor cells. Moreover, activation of p53 by MDM2 inhibition has a complex effect on IRF1/PD-L1 activation. These findings indicate that evaluation of p53 status in patients with melanoma will be important for predicting the response to PD-L1 monotherapy and/or dual treatments where p53 pathways participate in the overall response.</p
Recommended from our members
Low work function material development for the microminiature thermionic converter.
Thermionic energy conversion in a miniature format shows potential as a viable, high efficiency, micro to macro-scale power source. A microminiature thermionic converter (MTC) with inter-electrode spacings on the order of microns has been prototyped and evaluated at Sandia. The remaining enabling technology is the development of low work function materials and processes that can be integrated into these converters to increase power production at modest temperatures (800 - 1300 K). The electrode materials are not well understood and the electrode thermionic properties are highly sensitive to manufacturing processes. Advanced theoretical, modeling, and fabrication capabilities are required to achieve optimum performance for MTC diodes. This report describes the modeling and fabrication efforts performed to develop micro dispenser cathodes for use in the MTC
Recommended from our members
Electron spectroscopic and electrochemical investigations of surface reactions of lithium.
The growing technological application of metallic lithium has produced a greater need to understand its fundamental surface chemical properties. The use of lithium as an anode in high-energy density battery systems represents one application where this knowledge is required to optimize system performance. The surface chemistry of lithium will be discussed in terms of oxidants which represent the reductive half-cell components of these batteries, contaminants present during cell fabrication, and solvents used as the electrolytic medium. These systems have been studied in the low pressure limit ( < 1 millitorr) at atomically clean lithium surfaces using X-ray Photoelectron Spectroscopy (XPS). The lithium/sulfur dioxide system has been singled out for detailed study in order to explore the relationship between gas-phase and solution-phase processes. Electrochemical characterization of the lithium anode has been conducted as a function of controlled surface composition within this system. The ability of lithium to induce corrosion at structural components of these batteries (i.e., glass insulators) has also been investigated. A description of the chemical activity of lithium and its consequence has been developed from these results
Determination of critical length scales for corrosion processes using microelectroanalytical techniques.
Control system of the Raman spectrograph
Universal apparatus for measuring Raman spectrography (RS) on surface of solid state samples
was designed and realized. It enables to obtain Raman spectrum from the measured semiconductor sample
excited by powerful Ar-ion or HeNe lasers, alternatively. The PC controlled equipment consists of a composite
optical setup, lasers, optical monochromator, very sensitive CCD camera, micromanipulators, and electric
circuits serving to extract relevant signal from the noisy background
- …
