128 research outputs found
Hydration studies on the archaeal protein Sso7d using NMR measurements and MD simulations
<p>Abstract</p> <p>Background</p> <p>How proteins approach surrounding molecules is fundamental to our understanding of the specific interactions that occur at the surface of proteins. The enhanced surface accessibility of small molecules such as organic solvents and paramagnetic probes to protein binding sites has been observed; however, the molecular basis of this finding has not been fully established. Recently, it has been suggested that hydration dynamics play a predominant role in controlling the distribution of hot spots on surface of proteins.</p> <p>Results</p> <p>In the present study, the hydration of the archaeal multifunctional protein Sso7d from <it>Solfolobus solfataricus </it>was investigated using a combination of computational and experimental data derived from molecular dynamics simulations and ePHOGSY NMR spectroscopy.</p> <p>Conclusions</p> <p>We obtained a convergent protein hydration landscape that indicated how the shape and stability of the Sso7d hydration shell could modulate the function of the protein. The DNA binding domain overlaps with the protein region involved in chaperon activity and this domain is hydrated only in a very small central region. This localized hydration seems to favor intermolecular approaches from a large variety of ligands. Conversely, high water density was found in surface regions of the protein where the ATP binding site is located, suggesting that surface water molecules play a role in protecting the protein from unspecific interactions.</p
Two dimensional patterning of fluorescent proteins in hydrogels.
This work describes the successful micropatterning of hybrid systems consisting of hydrogel-dispersed optically active and controllable proteins on solid surfaces without degradation of the photophysical properties of the light-emitting biomolecules. It demonstrates the preservation of the luminescence properties of proteins entrapped into isolated microstructures of poly(acrylamide) gel. This way we can exploit both the structural and function-preserving properties of the hydrogels and the functionality of light-emitting proteins. We believe that this approach can open the way to the realization of nanopatterned optical memories based on photochromic biomolecules
Acromegaly is associated with increased cancer risk: A survey in Italy
It is debated if acromegalic patients have an increased risk to develop malignancies. The aim of the present study was to assess the standardized incidence ratios (SIRs) of different types of cancer in acromegaly on a large series of acromegalic patients managed in the somatostatin analogs era. It was evaluated the incidence of cancer in an Italian nationwide multicenter cohort study of 1512 acromegalic patients, 624 men and 888 women, mean age at diagnosis 45 \uc2\ub1 13 years, followed up for a mean of 10 years (12573 person-years) in respect to the general Italian population. Cancer was diagnosed in 124 patients, 72 women and 52 men. The SIRs for all cancers was significantly increased compared to the general Italian population (expected: 88, SIR 1.41; 95% CI, 1.18-1.68, P < 0.001). In the whole series, we found a significantly increased incidence of colorectal cancer (SIR 1.67; 95% CI, 1.07-2.58, P = 0.022), kidney cancer (SIR 2.87; 95% CI, 1.55-5.34, P < 0.001) and thyroid cancer (SIR 3.99; 95% CI, 2.32-6.87, P < 0.001). The exclusion of 11 cancers occurring before diagnosis of acromegaly (all in women) did not change remarkably the study outcome. In multivariate analysis, the factors significantly associated with an increased risk of malignancy were age and family history of cancer, with a non-significant trend for the estimated duration of acromegaly before diagnosis. In conclusion, we found evidence that acromegaly in Italy is associated with a moderate increase in cancer risk
The role of the IT-state in D76N β2-microglobulin amyloid assembly: a crucial intermediate or an innocuous bystander?
The D76N variant of human β2-microglobulin (β2m) is the causative agent of a hereditary amyloid disease. Interestingly, D76N-associated amyloidosis has a distinctive pathology compared with aggregation of wild-type (WT) β2m which occurs in dialysis-related amyloidosis. A folding intermediate of WT-β2m, known as the IT-state, which contains a non-native trans Pro32, has been shown to be a key precursor of WT-β2m aggregation in vitro. However, how a single amino acid substitution enhances the rate of aggregation of D76N-β2m and gives rise to a different amyloid disease remained unclear. Using real-time refolding experiments monitored by CD and NMR, we show that the folding mechanisms of WT- and D76N-β2m are conserved in that both proteins fold slowly via an IT-state that has similar structural properties. Surprisingly, however, direct measurement of the equilibrium population of IT using NMR showed no evidence for an increased population of the IT-state for D76N-β2m, ruling out previous models suggesting that this could explain its enhanced aggregation propensity. Producing a kinetically trapped analogue of IT by deleting the N-terminal six amino acids increases the aggregation rate of WT-β2m, but slows aggregation of D76N-β2m, supporting the view that while the folding mechanisms of the two proteins are conserved, their aggregation mechanisms differ. The results exclude the IT-state as the cause of the rapid aggregation of D76N-β2m, suggesting that other non-native states must cause its high aggregation rate. The results highlight how a single substitution at a solvent-exposed site can affect the mechanism of aggregation and the resulting disease
A genome‐wide association meta‐analysis of all‐cause and vascular dementia
INTRODUCTION: Dementia is a multifactorial disease with Alzheimer's disease (AD) and vascular dementia (VaD) pathologies making the largest contributions. Yet, most genome-wide association studies (GWAS) focus on AD. METHODS: We conducted a GWAS of all-cause dementia (ACD) and examined the genetic overlap with VaD. Our dataset includes 800,597 individuals, with 46,902 and 8702 cases of ACD and VaD, respectively. Known AD loci for ACD and VaD were replicated. Bioinformatic analyses prioritized genes that are likely functionally relevant and shared with closely related traits and risk factors. RESULTS: For ACD, novel loci identified were associated with energy transport (SEMA4D), neuronal excitability (ANO3), amyloid deposition in the brain (RBFOX1), and magnetic resonance imaging markers of small vessel disease (SVD; HBEGF). Novel VaD loci were associated with hypertension, diabetes, and neuron maintenance (SPRY2, FOXA2, AJAP1, and PSMA3). DISCUSSION: Our study identified genetic risks underlying ACD, demonstrating overlap with neurodegenerative processes, vascular risk factors, and cerebral SVD. Highlights: We conducted the largest genome-wide association study of all-cause dementia (ACD) and vascular dementia (VaD). Known genetic variants associated with AD were replicated for ACD and VaD. Functional analyses identified novel loci for ACD and VaD. Genetic risks of ACD overlapped with neurodegeneration, vascular risk factors, and cerebral small vessel disease
Common variants in Alzheimer’s disease and risk stratification by polygenic risk scores
Funder: Funder: Fundación bancaria ‘La Caixa’ Number: LCF/PR/PR16/51110003 Funder: Grifols SA Number: LCF/PR/PR16/51110003 Funder: European Union/EFPIA Innovative Medicines Initiative Joint Number: 115975 Funder: JPco-fuND FP-829-029 Number: 733051061Genetic discoveries of Alzheimer's disease are the drivers of our understanding, and together with polygenetic risk stratification can contribute towards planning of feasible and efficient preventive and curative clinical trials. We first perform a large genetic association study by merging all available case-control datasets and by-proxy study results (discovery n = 409,435 and validation size n = 58,190). Here, we add six variants associated with Alzheimer's disease risk (near APP, CHRNE, PRKD3/NDUFAF7, PLCG2 and two exonic variants in the SHARPIN gene). Assessment of the polygenic risk score and stratifying by APOE reveal a 4 to 5.5 years difference in median age at onset of Alzheimer's disease patients in APOE ɛ4 carriers. Because of this study, the underlying mechanisms of APP can be studied to refine the amyloid cascade and the polygenic risk score provides a tool to select individuals at high risk of Alzheimer's disease
Author Correction: Common variants in Alzheimer's disease and risk stratification by polygenic risk scores.
New insights into the genetic etiology of Alzheimer's disease and related dementias.
Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele
- …
