1,675 research outputs found
Acute Heart Failure Assessment: The Role of Focused Emergency Cardiopulmonary Ultrasound in Identification and Early Management
Right ventricular endocardial segmentation in CMR images using a novel inter-modality statistical shape modelling approach
Statistical shape modelling (SSM) approaches have been proposed as a powerful tool to segment the left ventricle in cardiac magnetic resonance (CMR) images. Our aim was to extend this method to segment the RV cavity in CMR images and validate it compared to the conventional gold-standard (GS) manual tracing. A SSM of the RV was built using a database of 4347 intrinsically 3D surfaces, extracted from transthoracic 3D echo cardiographic (3DE) images of 219 retrospective patients. The SSM was then scaled and deformed on the base of some features extracted, with different strategies, from each short-axis plane until a stable condition was reached. The proposed approach, tested on 14 patients, resulted in a high correlation (r2=0.97) and narrow limits of agreement (± 17% error) when comparing the semiautomatic volumes to the GS, confirming the accuracy of this approach in segmenting the RV endocardium
A new physical interpretation of optical and infrared variability in quasars
Changing-look quasars are a recently identified class of active galaxies in
which the strong UV continuum and/or broad optical hydrogen emission lines
associated with unobscured quasars either appear or disappear on timescales of
months to years. The physical processes responsible for this behaviour are
still debated, but changes in the black hole accretion rate or accretion disk
structure appear more likely than changes in obscuration. Here we report on
four epochs of spectroscopy of SDSS J110057.70-005304.5, a quasar at a redshift
of whose UV continuum and broad hydrogen emission lines have faded,
and then returned over the past 20 years. The change in this quasar
was initially identified in the infrared, and an archival spectrum from 2010
shows an intermediate phase of the transition during which the flux below
rest-frame 3400\AA\ has decreased by close to an order of magnitude.
This combination is unique compared to previously published examples of
changing-look quasars, and is best explained by dramatic changes in the
innermost regions of the accretion disk. The optical continuum has been rising
since mid-2016, leading to a prediction of a rise in hydrogen emission line
flux in the next year. Increases in the infrared flux are beginning to follow,
delayed by a 3 year observed timescale. If our model is confirmed, the
physics of changing-look quasars are governed by processes at the innermost
stable circular orbit (ISCO) around the black hole, and the structure of the
innermost disk. The easily identifiable and monitored changing-look quasars
would then provide a new probe and laboratory of the nuclear central engine.Comment: 13 pages, 4 figures, 3 tables. Published in MNRAS. All code and data
links on GitHub, https://github.com/d80b2t/WISE_L
Evaluation of different statistical shape models for segmentation of the left ventricular endocardium from magnetic resonance images
International audienceStatistical shape models (SSMs) represent a powerful tool used in patient-specific modeling to segment medical images because they incorporate a-priori knowledge that guide the model during deformation. Our aim was to evaluate segmentation accuracy in terms of left ventricular (LV) volumes obtained using four different SSMs versus manual gold standard tracing on cardiac magnetic resonance (CMR) images. A database of 3D echocardiographic (3DE) LV surfaces obtained in 435 patients was used to generate four different SSMs, based on cardiac phase selection. Each model was scaled and deformed to detect LV endocardial contours in the enddiastolic (ED) and end-systolic (ES) frames of a CMR short-axis (SAX) stack for 15 patients with normal LV function. Linear correlation and Bland–Altman analyses versus gold-standard showed in all cases high correlation (r²>0.95), non-significant biases and narrow limits of agreement
Regularity Properties and Pathologies of Position-Space Renormalization-Group Transformations
We reconsider the conceptual foundations of the renormalization-group (RG)
formalism, and prove some rigorous theorems on the regularity properties and
possible pathologies of the RG map. Regarding regularity, we show that the RG
map, defined on a suitable space of interactions (= formal Hamiltonians), is
always single-valued and Lipschitz continuous on its domain of definition. This
rules out a recently proposed scenario for the RG description of first-order
phase transitions. On the pathological side, we make rigorous some arguments of
Griffiths, Pearce and Israel, and prove in several cases that the renormalized
measure is not a Gibbs measure for any reasonable interaction. This means that
the RG map is ill-defined, and that the conventional RG description of
first-order phase transitions is not universally valid. For decimation or
Kadanoff transformations applied to the Ising model in dimension ,
these pathologies occur in a full neighborhood of the low-temperature part of the first-order
phase-transition surface. For block-averaging transformations applied to the
Ising model in dimension , the pathologies occur at low temperatures
for arbitrary magnetic-field strength. Pathologies may also occur in the
critical region for Ising models in dimension . We discuss in detail
the distinction between Gibbsian and non-Gibbsian measures, and give a rather
complete catalogue of the known examples. Finally, we discuss the heuristic and
numerical evidence on RG pathologies in the light of our rigorous theorems.Comment: 273 pages including 14 figures, Postscript, See also
ftp.scri.fsu.edu:hep-lat/papers/9210/9210032.ps.
The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe
The preponderance of matter over antimatter in the early Universe, the
dynamics of the supernova bursts that produced the heavy elements necessary for
life and whether protons eventually decay --- these mysteries at the forefront
of particle physics and astrophysics are key to understanding the early
evolution of our Universe, its current state and its eventual fate. The
Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed
plan for a world-class experiment dedicated to addressing these questions. LBNE
is conceived around three central components: (1) a new, high-intensity
neutrino source generated from a megawatt-class proton accelerator at Fermi
National Accelerator Laboratory, (2) a near neutrino detector just downstream
of the source, and (3) a massive liquid argon time-projection chamber deployed
as a far detector deep underground at the Sanford Underground Research
Facility. This facility, located at the site of the former Homestake Mine in
Lead, South Dakota, is approximately 1,300 km from the neutrino source at
Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino
charge-parity symmetry violation and mass ordering effects. This ambitious yet
cost-effective design incorporates scalability and flexibility and can
accommodate a variety of upgrades and contributions. With its exceptional
combination of experimental configuration, technical capabilities, and
potential for transformative discoveries, LBNE promises to be a vital facility
for the field of particle physics worldwide, providing physicists from around
the globe with opportunities to collaborate in a twenty to thirty year program
of exciting science. In this document we provide a comprehensive overview of
LBNE's scientific objectives, its place in the landscape of neutrino physics
worldwide, the technologies it will incorporate and the capabilities it will
possess.Comment: Major update of previous version. This is the reference document for
LBNE science program and current status. Chapters 1, 3, and 9 provide a
comprehensive overview of LBNE's scientific objectives, its place in the
landscape of neutrino physics worldwide, the technologies it will incorporate
and the capabilities it will possess. 288 pages, 116 figure
Study of exclusive one-pion and one-eta production using hadron and dielectron channels in pp reactions at kinetic beam energies of 1.25 GeV and 2.2 GeV with HADES
We present measurements of exclusive ensuremathπ+,0 and η production in pp reactions at 1.25GeV and 2.2GeV beam kinetic energy in hadron and dielectron channels. In the case of π+ and π0 , high-statistics invariant-mass and angular distributions are obtained within the HADES acceptance as well as acceptance-corrected distributions, which are compared to a resonance model. The sensitivity of the data to the yield and production angular distribution of Δ (1232) and higher-lying baryon resonances is shown, and an improved parameterization is proposed. The extracted cross-sections are of special interest in the case of pp → pp η , since controversial data exist at 2.0GeV; we find \ensuremathσ=0.142±0.022 mb. Using the dielectron channels, the π0 and η Dalitz decay signals are reconstructed with yields fully consistent with the hadronic channels. The electron invariant masses and acceptance-corrected helicity angle distributions are found in good agreement with model predictions
Lymphatic vessel density and VEGF-C expression are significantly different among benign and malignant thyroid lesions
Thyroid cancer is the most frequent endocrine neoplasia worldwide. The route for metastasis and loco-regional invasion preferentially occurs by lymphatic vessels. For this reason, the assessment of lymphatic vessel density (LVD) is supposed to represent both a prognostic parameter and also a potential therapeutic target. In order to evaluate the value of LVD in benign and malignant thyroid lesions, we analyzed 110 thyroidectomy specimens using D2-40, a specific marker for lymphatic vessels and vascular endothelial growth factor C (VEGF-C), the most potent molecule of lymphatic proliferation. LVD was significantly different between papillary and follicular carcinomas in total (p = 0.045) and peritumoral area (p = 0.042). Follicular adenoma and follicular carcinoma showed an important difference of intra- (p = 0.019) and peritumoral (p = 0.033) LVD. VEGF-C was more markedly expressed in malignancies than in benign lesions (p = 0.0001). Almost all cancers with high positive VEGF-C expression also exhibited increased peritumoral LVD (p = 0.049) when compared with the benign lesions. Indeed, the high peritumoral LVD of malignant thyroid lesions is an important finding for surgery planning and supports the practice of total thyroidectomy in malignant thyroid neoplasm's since the lymphatic peritumoral vessels definitely are an escape path for tumor cells
- …
