4,035 research outputs found
Boxicity and separation dimension
A family of permutations of the vertices of a hypergraph is
called 'pairwise suitable' for if, for every pair of disjoint edges in ,
there exists a permutation in in which all the vertices in one
edge precede those in the other. The cardinality of a smallest such family of
permutations for is called the 'separation dimension' of and is denoted
by . Equivalently, is the smallest natural number so that
the vertices of can be embedded in such that any two
disjoint edges of can be separated by a hyperplane normal to one of the
axes. We show that the separation dimension of a hypergraph is equal to the
'boxicity' of the line graph of . This connection helps us in borrowing
results and techniques from the extensive literature on boxicity to study the
concept of separation dimension.Comment: This is the full version of a paper by the same name submitted to
WG-2014. Some results proved in this paper are also present in
arXiv:1212.6756. arXiv admin note: substantial text overlap with
arXiv:1212.675
Structural parameterizations for boxicity
The boxicity of a graph is the least integer such that has an
intersection model of axis-aligned -dimensional boxes. Boxicity, the problem
of deciding whether a given graph has boxicity at most , is NP-complete
for every fixed . We show that boxicity is fixed-parameter tractable
when parameterized by the cluster vertex deletion number of the input graph.
This generalizes the result of Adiga et al., that boxicity is fixed-parameter
tractable in the vertex cover number.
Moreover, we show that boxicity admits an additive -approximation when
parameterized by the pathwidth of the input graph.
Finally, we provide evidence in favor of a conjecture of Adiga et al. that
boxicity remains NP-complete when parameterized by the treewidth.Comment: 19 page
An investigation of minimisation criteria
Minimisation can be used within treatment trials to ensure that prognostic factors are evenly distributed between treatment groups. The technique is relatively straightforward to apply but does require running tallies of patient recruitments to be made and some simple calculations to be performed prior to each allocation. As computing facilities have become more widely available, minimisation has become a more feasible option for many. Although the technique has increased in popularity, the mode of application is often poorly reported and the choice of input parameters not justified in any logical way
Psychosocial functioning and intelligence both partly explain socioeconomic inequalities in premature death. A population-based male cohort study
The possible contributions of psychosocial functioning and intelligence differences to socioeconomic status (SES)-related inequalities in premature death were investigated. None of the previous studies focusing on inequalities in mortality has included measures of both psychosocial functioning and intelligence.The study was based on a cohort of 49 321 men born 1949-1951 from the general community in Sweden. Data on psychosocial functioning and intelligence from military conscription at ∼18 years of age were linked with register data on education, occupational class, and income at 35-39 years of age. Psychosocial functioning was rated by psychologists as a summary measure of differences in level of activity, power of initiative, independence, and emotional stability. Intelligence was measured through a multidimensional test. Causes of death between 40 and 57 years of age were followed in registers.The estimated inequalities in all-cause mortality by education and occupational class were attenuated with 32% (95% confidence interval: 20-45%) and 41% (29-52%) after adjustments for individual psychological differences; both psychosocial functioning and intelligence contributed to account for the inequalities. The inequalities in cardiovascular and injury mortality were attenuated by as much as 51% (24-76%) and 52% (35-68%) after the same adjustments, and the inequalities in alcohol-related mortality were attenuated by up to 33% (8-59%). Less of the inequalities were accounted for when those were measured by level of income, with which intelligence had a weaker correlation. The small SES-related inequalities in cancer mortality were not attenuated by adjustment for intelligence.Differences in psychosocial functioning and intelligence might both contribute to the explanation of observed SES-related inequalities in premature death, but the magnitude of their contributions likely varies with measure of socioeconomic status and cause of death. Both psychosocial functioning and intelligence should be considered in future studies
Scintillator-based ion beam profiler for diagnosing laser-accelerated ion beams
Next generation intense, short-pulse laser facilities require new high repetition rate diagnostics for the detection of ionizing radiation. We have designed a new scintillator-based ion beam profiler capable of measuring the ion beam transverse profile for a number of discrete energy ranges. The optical response and emission characteristics of four common plastic scintillators has been investigated for a range of proton energies and fluxes. The scintillator light output (for 1 MeV > Ep < 28 MeV) was found to have a non-linear scaling with proton energy but a linear response to incident flux. Initial measurements with a prototype diagnostic have been successful, although further calibration work is required to characterize the total system response and limitations under the high flux, short pulse duration conditions of a typical high intensity laser-plasma interaction
Molecular Mechanism of Action of Antimalarial Benzoisothiazolones: Species-Selective Inhibitors of the Plasmodium spp. MEP Pathway enzyme, IspD
The methylerythritol phosphate (MEP) pathway is an essential metabolic pathway found in malaria parasites, but absent in mammals, making it a highly attractive target for the discovery of novel and selective antimalarial therapies. Using high-throughput screening, we have identified 2-phenyl benzo[d]isothiazol-3(2H)-ones as species-selective inhibitors of Plasmodium spp. 2-C-methyl-D-erythritol-4-phosphate cytidyltransferase (IspD), the third catalytic enzyme of the MEP pathway. 2-Phenyl benzo[d]isothiazol-3(2H)-ones display nanomolar inhibitory activity against P. falciparum and P. vivax IspD and prevent the growth of P. falciparum in culture, with EC50 values below 400 nM. In silico modeling, along with enzymatic, genetic and crystallographic studies, have established a mechanism-of-action involving initial non-covalent recognition of inhibitors at the IspD binding site, followed by disulfide bond formation through attack of an active site cysteine residue on the benzo[d]isothiazol-3(2H)-one core. The species-selective inhibitory activity of these small molecules against Plasmodium spp. IspD and cultured parasites suggests they have potential as lead compounds in the pursuit of novel drugs to treat malaria
A comprehensive 1000 Genomes-based genome-wide association meta-analysis of coronary artery disease
Existing knowledge of genetic variants affecting risk of coronary artery disease (CAD) is largely based on genome-wide association studies (GWAS) analysis of common SNPs. Leveraging phased haplotypes from the 1000 Genomes Project, we report a GWAS meta-analysis of 185 thousand CAD cases and controls, interrogating 6.7 million common (MAF>0.05) as well as 2.7 million low frequency (0.005<MAF<0.05) variants. In addition to confirmation of most known CAD loci, we identified 10 novel loci, eight additive and two recessive, that contain candidate genes that newly implicate biological processes in vessel walls. We observed intra-locus allelic heterogeneity but little evidence of low frequency variants with larger effects and no evidence of synthetic association. Our analysis provides a comprehensive survey of the fine genetic architecture of CAD showing that genetic susceptibility to this common disease is largely determined by common SNPs of small effect siz
Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw.
The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition
Magnetism, FeS colloids, and Origins of Life
A number of features of living systems: reversible interactions and weak
bonds underlying motor-dynamics; gel-sol transitions; cellular connected
fractal organization; asymmetry in interactions and organization; quantum
coherent phenomena; to name some, can have a natural accounting via
interactions, which we therefore seek to incorporate by expanding the horizons
of `chemistry-only' approaches to the origins of life. It is suggested that the
magnetic 'face' of the minerals from the inorganic world, recognized to have
played a pivotal role in initiating Life, may throw light on some of these
issues. A magnetic environment in the form of rocks in the Hadean Ocean could
have enabled the accretion and therefore an ordered confinement of
super-paramagnetic colloids within a structured phase. A moderate H-field can
help magnetic nano-particles to not only overcome thermal fluctuations but also
harness them. Such controlled dynamics brings in the possibility of accessing
quantum effects, which together with frustrations in magnetic ordering and
hysteresis (a natural mechanism for a primitive memory) could throw light on
the birth of biological information which, as Abel argues, requires a
combination of order and complexity. This scenario gains strength from
observations of scale-free framboidal forms of the greigite mineral, with a
magnetic basis of assembly. And greigite's metabolic potential plays a key role
in the mound scenario of Russell and coworkers-an expansion of which is
suggested for including magnetism.Comment: 42 pages, 5 figures, to be published in A.R. Memorial volume, Ed
Krishnaswami Alladi, Springer 201
- …
