1,965 research outputs found

    A study to improve the mechanical properties of silicon carbide ribbon fibers

    Get PDF
    Preliminary deposition studies of SiC ribbon on a carbon ribbon substrate showed that the dominant strength limiting flaws were at the substrate surface. Procedures for making the carbon ribbon substrate from polyimide film were improved, providing lengths up to 450 meters (1,500 ft.) of flat carbon ribbon substrate 1,900 microns (75 mils) wide by 25 microns (1 mil) thick. The flaws on the carbon ribbon were smaller and less frequent than on carbon ribbon used earlier. SiC ribbon made using the improved substrate, including a layer of pyrolytic graphite to reduce further the severity of substrate surface flaws, showed strength levels up to the 2,068 MPa (300 Ksi) target of the program, with average strength levels over 1,700 MPa (250 Ksi) with coefficient of variation as low as 10% for some runs

    Releasing Authority Chairs: A Comparative Snapshot Across Three Decades

    Get PDF
    This report provides a comparative analysis of releasing authority chairs' views of the issues and challenges confronting them at two points in time: 1988 and 2015. Drawing from two surveys, one conducted during the tenure of an ACA Parole Task Force that functioned from 1986-1988, and the other a survey published in 2016 by the Robina Institute called The Continuing Leverage of Releasing Authorities: Findings from a National Survey, this new publication highlights both change and constancy relative to a wide range of comparative markers including, but not limited to, structured decision tools, prison crowding and risk aversion, and the myriad factors considered in granting or denying parole

    The Continuing Leverage of Releasing Authorities: Findings from a National Survey

    Get PDF
    The Robina Institute of Criminal Law and Criminal Justice launched a national survey of releasing authorities in March 2015 to each state, and the U.S. Parole Commission. The importance of the survey was underscored by an endorsement from the Association of Paroling Authorities International (APAI). We are pleased to present the results from this important survey here. This is the first comprehensive survey of parole boards completed in nearly 10 years. Its findings provide a rich database for better understanding the policy and practice of paroling authorities. The last survey to be conducted of paroling authorities was in 2007/2008.The current report offers an expansion and update of previous surveys. The results summarized throughout the report offer a timely resource for paroling authorities, correctional policy-makers and practitioners, legislators, and those with a public policy interest in sentencing and criminal justice operations. It is our hope that the document and its findings provide key justice system and other stakeholders with an incisive snapshot of the work of paroling authorities across the country in a manner that contributes to a larger conversation about sound and effective parole release and revocation practices.The completion of this comprehensive survey and the reporting of its findings offers a timely and invaluable resource for releasing authorities. It provides them and other key justice system stakeholders with a comparative understanding of their colleagues' work across the nation, and contributes to a larger conversation pertaining to effective parole release and revocation practices

    Pascalammetry with operando microbattery probes: Sensing high stress in solid-state batteries.

    Get PDF
    Energy storage science calls for techniques to elucidate ion transport over a range of conditions and scales. We introduce a new technique, pascalammetry, in which stress is applied to a solid-state electrochemical device and induced faradaic current transients are measured and analyzed. Stress-step pascalammetry measurements are performed on operando microbattery probes (Li2O/Li/W) and Si cathodes, revealing stress-assisted Li+ diffusion. We show how non-Cottrellian lithium diffusional kinetics indicates stress, a prelude to battery degradation. An analytical solution to a diffusion/activation equation describes this stress signature, with spatiotemporal characteristics distinct from Cottrell's classic solution for unstressed systems. These findings create an unprecedented opportunity for quantitative detection of stress in solid-state batteries through the current signature. Generally, pascalammetry offers a powerful new approach to study stress-related phenomena in any solid-state electrochemical system

    Impact of commonly prescribed exercise interventions on platelet activation in physically inactive and overweight men.

    Get PDF
    The exercise paradox infers that, despite the well-established cardioprotective effects of repeated episodic exercise (training), the risk of acute atherothrombotic events may be transiently increased during and soon after an exercise bout. However, the acute impact of different exercise modalities on platelet function has not previously been addressed. We hypothesized that distinct modalities of exercise would have differing effects on in vivo platelet activation and reactivity to agonists which induce monocyte-platelet aggregate (MPA) formation. Eight middle-aged (53.5 ± 1.6 years) male participants took part in four 30 min experimental interventions (aerobic AE, resistance RE, combined aerobic/resistance exercise CARE, or no-exercise NE), in random order. Blood samples were collected before, immediately after, and 1 h after each intervention, and incubated with one of three agonists of physiologically/clinically relevant pathways of platelet activation (thrombin receptor activating peptide-6 TRAP, arachidonic acid AA, and cross-linked collagen-related peptide xCRP). In the presence of AA, TRAP, and xCRP, both RE and CARE evoked increases in MPAs immediately post-exercise (P < 0.01), whereas only AA significantly increased MPAs immediately after AE (P < 0.01). These increases in platelet activation post-exercise were transient, as responses approached pre-exercise levels by 1 h. These are the first data to suggest that exercise involving a resistance component in humans may transiently increase platelet-mediated thrombotic risk more than aerobic modalities

    Evidence for Shear Stress-Mediated Dilation of the Internal Carotid Artery in Humans.

    Get PDF
    Increases in arterial carbon dioxide tension (hypercapnia) elicit potent vasodilation of cerebral arterioles. Recent studies have also reported vasodilation of the internal carotid artery during hypercapnia, but the mechanism(s) mediating this extracranial vasoreactivity are unknown. Hypercapnia increases carotid shear stress, a known stimulus to vasodilation in other conduit arteries. To explore the hypothesis that shear stress contributes to hypercapnic internal carotid dilation in humans, temporal changes in internal and common carotid shear rate and diameter, along with changes in middle cerebral artery velocity, were simultaneously assessed in 18 subjects at rest and during hypercapnia (6% carbon dioxide). Middle cerebral artery velocity increased significantly (69±10-103±17 cm/s; P<0.01) along with shear in both the internal (316±52-518±105 1/s; P<0.01) and common (188±40-275±61 1/s; P<0.01) carotids. Diameter also increased (P<0.01) in both carotid arteries (internal: +6.3±2.9%; common: +5.8±3.0%). Following hypercapnia onset, there was a significant delay between the onset of internal carotid shear (22±12 seconds) and diameter change (85±51 seconds). This time course is associated with shear-mediated dilation of larger conduit arteries in humans. There was a strong association between change in shear and diameter of the internal carotid (r=0.68; P<0.01). These data indicate, for the first time in humans, that shear stress is an important stimulus for hypercapnic vasodilation of the internal carotid artery. The combination of a hypercapnic stimulus and continuous noninvasive, high-resolution assessment of internal carotid shear and dilation may provide novel insights into the function and health of the clinically important extracranial arteries in humans

    Dual, orthogonal, backlit pinhole radiography in OMEGA experiments

    Full text link
    Backlit pinhole radiography used with ungated film as a detector creates x-ray radiographs with increased resolution and contrast. Current hydrodynamics experiments on the OMEGA Laser use a three-dimensional sinusoidal pattern as a seed perturbation for the study of instabilities. The structure of this perturbation makes it highly desirable to obtain two simultaneous orthogonal backlighting views. We accomplished this using two backlit pinholes each mounted 12 mm12mm from the target. The pinholes, of varying size and shape, were centered on 5 mm5mm square foils of 50 μm50μm thick Ta. The backlighting is by KK-alpha emission from a 500 μm500μm square Ti or Sc foil mounted 500 μm500μm from the Ta on a plastic substrate. Four laser beams overfill the metal foil, so that the expanding plastic provides radial tamping of the expanding metal plasma. The resulting x-rays pass through the target onto (ungated) direct exposure film (DEF). Interference between the two views is reduced by using a nose cone in front of the DEF, typically with a 9 mm9mm Ta aperture and with magnets to deflect electrons. Comparison of varying types of pinholes and film exposures will be presented from recent experiments as well as an analysis of the background noise created using this experimental technique.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87894/2/10E327_1.pd

    On Validating an Astrophysical Simulation Code

    Full text link
    We present a case study of validating an astrophysical simulation code. Our study focuses on validating FLASH, a parallel, adaptive-mesh hydrodynamics code for studying the compressible, reactive flows found in many astrophysical environments. We describe the astrophysics problems of interest and the challenges associated with simulating these problems. We describe methodology and discuss solutions to difficulties encountered in verification and validation. We describe verification tests regularly administered to the code, present the results of new verification tests, and outline a method for testing general equations of state. We present the results of two validation tests in which we compared simulations to experimental data. The first is of a laser-driven shock propagating through a multi-layer target, a configuration subject to both Rayleigh-Taylor and Richtmyer-Meshkov instabilities. The second test is a classic Rayleigh-Taylor instability, where a heavy fluid is supported against the force of gravity by a light fluid. Our simulations of the multi-layer target experiments showed good agreement with the experimental results, but our simulations of the Rayleigh-Taylor instability did not agree well with the experimental results. We discuss our findings and present results of additional simulations undertaken to further investigate the Rayleigh-Taylor instability.Comment: 76 pages, 26 figures (3 color), Accepted for publication in the ApJ
    corecore