54 research outputs found
The T-Cell Immune Response against Kaposi's Sarcoma-Associated Herpesvirus
Kaposi's sarcoma-associated herpesvirus (KSHV) is the aetiological agent of Kaposi's sarcoma (KS), the most frequently arising malignancy in individuals with untreated HIV/AIDS. There are several lines of evidence to indicate that Kaposi's sarcoma oncogenesis is associated with loss of T-cell-mediated control of KSHV-infected cells. KSHV can establish life-long asymptomatic infection in immune-competent individuals. However, when T-cell immune control declines, for example, through AIDS or treatment with immunosuppressive drugs, both the prevalence of KSHV infection and the incidence of KS in KSHV carriers dramatically increase. Moreover, a dramatic and spontaneous improvement in KS is frequently seen when immunity is restored, for example, through antiretroviral therapy or the cessation of iatrogenic drugs. In this paper we describe the current state of knowledge on the T-cell immune responses against KSHV
Unravelling the complexity of ventilator-associated pneumonia:a systematic methodological literature review of diagnostic criteria and definitions used in clinical research
BackgroundVentilator-associated pneumonia (VAP) is a prevalent and grave hospital-acquired infection that affects mechanically ventilated patients. Diverse diagnostic criteria can significantly affect VAP research by complicating the identification and management of the condition, which may also impact clinical management.ObjectivesWe conducted this review to assess the diagnostic criteria and the definitions of the term “ventilator-associated” used in randomised controlled trials (RCTs) of VAP management.Search methodsBased on the protocol (PROSPERO 2019 CRD42019147411), we conducted a systematic search on MEDLINE/PubMed and Cochrane CENTRAL for RCTs, published or registered between 2010 and 2024.Selection criteriaWe included completed and ongoing RCTs that assessed pharmacological or non-pharmacological interventions in adults with VAP.Data collection and synthesisData were collected using a tested extraction sheet, as endorsed by the Cochrane Collaboration. After cross-checking, data were summarised in a narrative and tabular form.ResultsIn total, 7,173 records were identified through the literature search. Following the exclusion of records that did not meet the eligibility criteria, 119 studies were included. Diagnostic criteria were provided in 51.2% of studies, and the term “ventilator-associated” was defined in 52.1% of studies. The most frequently included diagnostic criteria were pulmonary infiltrates (96.7%), fever (86.9%), hypothermia (49.1%), sputum (70.5%), and hypoxia (32.8%). The different criteria were used in 38 combinations across studies. The term “ventilator-associated” was defined in nine different ways.ConclusionsWhen provided, diagnostic criteria and definitions of VAP in RCTs display notable variability. Continuous efforts to harmonise VAP diagnostic criteria in future clinical trials are crucial to improve quality of care, enable accurate epidemiological assessments, and guide effective antimicrobial stewardship
The CD8 and CD4 T-Cell Response against Kaposi's Sarcoma-Associated Herpesvirus Is Skewed Towards Early and Late Lytic Antigens
Kaposi's sarcoma-associated herpesvirus (KSHV) is causally related to Kaposi's sarcoma (KS), the most common malignancy in untreated individuals with HIV/AIDS. The adaptive T-cell immune response against KSHV has not been fully characterized. To achieve a better understanding of the antigenic repertoire of the CD8 and CD4 T-cell responses against KSHV, we constructed a library of lentiviral expression vectors each coding for one of 31 individual KSHV open reading frames (ORFs). We used these to transduce monocyte-derived dendritic cells (moDCs) isolated from 14 KSHV-seropositive (12 HIV-positive) and 7 KSHV-seronegative (4 HIV-positive) individuals. moDCs were transduced with up to 3 KSHV ORFs simultaneously (ORFs grouped according to their expression during the viral life cycle). Transduced moDCs naturally process the KSHV genes and present the resulting antigens in the context of MHC class I and II. Transduced moDCs were cultured with purified autologous T cells and the CD8 and CD4 T-cell proliferative responses to each KSHV ORF (or group) was assessed using a CFSE dye-based assay. Two pools of early lytic KSHV genes ([ORF8/ORF49/ORF61] and [ORF59/ORF65/K4.1]) were frequently-recognized targets of both CD8 and CD4 T cells from KSHV seropositive individuals. One pool of late lytic KSHV genes ([ORF28/ORF36/ORF37]) was a frequently-recognized CD8 target and another pool of late genes ([ORF33/K1/K8.1]) was a frequently-recognized CD4 target. We report that both the CD8 and CD4 T-cell responses against KSHV are skewed towards genes expressed in the early and late phases of the viral lytic cycle, and identify some previously unknown targets of these responses. This knowledge will be important to future immunological investigations into KSHV and may eventually lead to the development of better immunotherapies for KSHV-related diseases
Modulation of Early Host Innate Immune Response by an Avipox Vaccine Virus’ Lateral Body Protein
The avian pathogen fowlpox virus (FWPV) has been successfully used as a vaccine vector in poultry and humans, but relatively little is known about its ability to modulate host antiviral immune responses in these hosts, which are replication-permissive and nonpermissive, respectively. FWPV is highly resistant to avian type I interferon (IFN) and able to completely block the host IFN-response. Microarray screening of host IFN-regulated gene expression in cells infected with 59 different, nonessential FWPV gene knockout mutants revealed that FPV184 confers immunomodulatory capacity. We report that the FPV184-knockout virus (FWPVΔ184) induces the cellular IFN response as early as 2 h postinfection. The wild-type, uninduced phenotype can be rescued by transient expression of FPV184 in FWPVΔ184-infected cells. Ectopic expression of FPV184 inhibited polyI:C activation of the chicken IFN-β promoter and IFN-α activation of the chicken Mx1 promoter. Confocal and correlative super-resolution light and electron microscopy demonstrated that FPV184 has a functional nuclear localisation signal domain and is packaged in the lateral bodies of the virions. Taken together, these results provide a paradigm for a late poxvirus structural protein packaged in the lateral bodies, capable of suppressing IFN induction early during the next round of infection
Induction of Glucose Metabolism in Stimulated T Lymphocytes Is Regulated by Mitogen-Activated Protein Kinase Signaling
T lymphocytes play a critical role in cell-mediated immune responses. During activation, extracellular and intracellular signals alter T cell metabolism in order to meet the energetic and biosynthetic needs of a proliferating, active cell, but control of these phenomena is not well defined. Previous studies have demonstrated that signaling from the costimulatory receptor CD28 enhances glucose utilization via the phosphatidylinositol-3-kinase (PI3K) pathway. However, since CD28 ligation alone does not induce glucose metabolism in resting T cells, contributions from T cell receptor-initiated signaling pathways must also be important. We therefore investigated the role of mitogen-activated protein kinase (MAPK) signaling in the regulation of mouse T cell glucose metabolism. T cell stimulation strongly induces glucose uptake and glycolysis, both of which are severely impaired by inhibition of extracellular signal-regulated kinase (ERK), whereas p38 inhibition had a much smaller effect. Activation also induced hexokinase activity and expression in T cells, and both were similarly dependent on ERK signaling. Thus, the ERK signaling pathway cooperates with PI3K to induce glucose utilization in activated T cells, with hexokinase serving as a potential point for coordinated regulation
The stoichiometry of trimeric SIV glycoprotein interaction with CD4 differs from that of anti-envelope antibody Fab fragments
Human and simian immunodeficiency viruses infect host lymphoid cells by binding CD4 molecules via their gp160 envelope glycoproteins. Biochemical studies on recombinant SIVmac32H (pJ5) envelope ectodomain gp140 precursor protein show that the envelope is a trimer. Using size exclusion chromatography, quantitative amino acid analysis, analytical ultracentrifugation, and CD4-based competition assay, we demonstrate that the stoichiometry of CD4 receptor-oligomeric envelope interaction is 1:1. By contrast, Fab fragments of both neutralizing and non-neutralizing monoclonal antibodies bind at a 3:1 ratio. Thus, despite displaying equivalent CD4 binding sites on each of the three gp140 protomers within an uncleaved trimer, only one site binds the soluble 4-domain human CD4 extracellular segment. The anti-cooperativity and the faster k(off) of gp140 trimer:CD4 versus gp120 monomer:CD4 interaction suggest that CD4-induced conformational change is impeded in the intact envelope. The implications of these findings for immunity against human immunodeficiency virus and simian immunodeficiency virus are discussed
Killing of Kaposi's sarcoma-associated herpesvirus-infected fibroblasts during latent infection by activated natural killer cells.
Kaposi's sarcoma-associated herpesvirus (KSHV) establishes life-long infection by evading clearance by the host immune system. In de novo infection and lytic replication, KSHV escapes cytotoxic T cells and NK cells through downregulation of MHC class-I and ICAM-1 molecules and associated antigens involved in forming and sustaining the immunological synapse. However, the efficacy of such mechanisms in the context of the predominantly latent KSHV infection reported in Kaposi's sarcoma (KS) lesions is unclear. Using primary dermal fibroblasts in a novel in vitro model of chronic latent KSHV infection, we generated target cells with viral loads similar to those in spindle cells extracted from KS lesions. We show that latently KSHV-infected fibroblasts had normal levels of MHC-class I, ICAM-1, HLA-E and NKG2D ligand expression, were resistant to NK-cell natural cytotoxicity and were highly susceptible to killing by cytokine-activated immunocompetent NK cells. KSHV-infected fibroblasts expressed normal levels of IFN-γR1 and responded to exogenous IFN-γ by upregulating MHC class I, ICAM-1 and HLA-E and resisting activated NK-cell killing. These data demonstrate that physiologically relevant levels of latent KSHV infection in primary cells cause limited activation of resting NK cells and confer little specific resistance to control by activated NK cells
The T-Cell immune response against kaposi's sarcomaassociated herpesvirus
Kaposi's sarcoma-associated herpesvirus (KSHV) is the aetiological agent of Kaposi's sarcoma (KS), the most frequently arising malignancy in individuals with untreated HIV/AIDS. There are several lines of evidence to indicate that Kaposi's sarcoma oncogenesis is associated with loss of T-cell-mediated control of KSHV-infected cells. KSHV can establish life-long asymptomatic infection in immune-competent individuals. However, when T-cell immune control declines, for example, through AIDS or treatment with immunosuppressive drugs, both the prevalence of KSHV infection and the incidence of KS in KSHV carriers dramatically increase. Moreover, a dramatic and spontaneous improvement in KS is frequently seen when immunity is restored, for example, through antiretroviral therapy or the cessation of iatrogenic drugs. In this paper we describe the current state of knowledge on the T-cell immune responses against KSHV
Progress in precision medicine in cystic fibrosis: a focus on CFTR modulator therapy
The genetic multisystem condition cystic fibrosis (CF) has seen a paradigm shift in therapeutic approaches within the past decade. Since the first clinical descriptions in the 1930s, treatment advances had focused on the downstream consequences of a dysfunctional cystic fibrosis transmembrane conductance regulator (CFTR) chloride ion channel. The discovery of the gene that codes for CFTR and an understanding of the way in which different genetic mutations lead to disruption of normal CFTR function have led to the creation and subsequent licensing of drugs that target this process. This marks an important move towards precision medicine in CF and results from clinical trials and real-world clinical practice have been impressive. In this review we outline how CFTR modulator drugs restore function to the CFTR protein and the progress that is being made in this field. We also describe the real-world impact of CFTR modulators on both pulmonary and multisystem complications of CF and what this will mean for the future of CF care.</jats:p
Progress in precision medicine in cystic fibrosis:a focus on CFTR modulator therapy
The genetic multisystem condition cystic fibrosis (CF) has seen a paradigm shift in therapeutic approaches within the past decade. Since the first clinical descriptions in the 1930s, treatment advances had focused on the downstream consequences of a dysfunctional cystic fibrosis transmembrane conductance regulator (CFTR) chloride ion channel. The discovery of the gene that codes for CFTR and an understanding of the way in which different genetic mutations lead to disruption of normal CFTR function have led to the creation and subsequent licensing of drugs that target this process. This marks an important move towards precision medicine in CF and results from clinical trials and real-world clinical practice have been impressive. In this review we outline how CFTR modulator drugs restore function to the CFTR protein and the progress that is being made in this field. We also describe the real-world impact of CFTR modulators on both pulmonary and multisystem complications of CF and what this will mean for the future of CF care
- …
