371 research outputs found

    On the Radii of Extrasolar Giant Planets

    Full text link
    We have computed evolutionary models for extrasolar planets which range in mass from 0.1 to 3.0 Jovian Masses, and which range in equilibrium temperature from 113 K to 2000 K. We present four sequences of models, designed to show the structural effects of a solid core and of internal heating due to the conversion of kinetic to thermal energy at pressures of tens of bars. The model planetary radii are intended for comparisons with radii derived from observations of transiting extrasolar planets. To provide such comparisons, we expect that of order 10 transiting planets with orbital periods less than 200 days can be detected around bright (V<10) main-sequence stars for which accurate, well-sampled radial velocity measurements can be readily accumulated. Through these observations, structural properties of the planets will be derivable, particularly for low-mass, high-temperature planets. Implications regarding the transiting companion to OGLE-TR-56 recently announced by Konacki et al. are discussed. With regard to the confirmed transiting planet, HD 209458b, we find, in accordance with other recent calculations, that models without internal heating predict a radius that is 35 percent smaller than the observed radius. We explore the possibility that HD 209458b owes its large size to dissipation of energy arising from ongoing tidal circularization of the orbit. We show that residual scatter in the current radial velocity data set for HD 209458b is consistent with the presence of an as-of-yet undetected second companion, and that further radial velocity monitoring of the star is indicated.Comment: 23 pages, 3 figures, accepted by Astrophysical Journa

    A posteriori detection of the planetary transit of HD189733b in the Hipparcos photometry

    Full text link
    Thanks to observations performed at the Haute-Provence Observatory, Bouchy et al. recently announced the detection of a 2.2-day orbital period extra-solar planet that transits the disk of its parent star, HD189733. With high level of confidence, we find that Hipparcos likely observed one transit of HD189733b in October 1991, and possibly two others in February 1991 and February 1993. Using the range of possible periods for HD189733b, we find that the probability that none of those events are due to planetary transits but are instead all due to artifacts is lower than 0.15%. Thanks to the 15-year temporal baseline available, we can measure the orbital period of the planet HD189733b with a particularly high accuracy. We obtain a period of 2.218574 (+0.000006/-0.000010) days, corresponding to an accuracy of ~1 second. Such accurate measurements might provide clues for companions presence.Comment: 7 pages, to be published in Astronomy & Astrophysic

    Searching for unknown open clusters in the Tycho-2 catalog

    Full text link
    We present 11 new open cluster candidates found in a systematic search for unknown star clusters using the astrometric and photometric data included in the Tycho2 catalog. The possible existence of these stellar aggregates is supported by the analysis of proper motions, color-magnitude diagrams, stellar density distributions, and by the visual inspection of the Digitized Sky Survey (DSS) plates. With these tools we were able to determine mean absolute proper motions as well as preliminary reddenings, distances and ages for the majority of the candidates. We found that most of them are possibly nearby (closer than about 600 pc) open clusters never studied before.Comment: 14 pages, 6 figures. Accepted by A&

    WISE Circumstellar Disks in the Young Sco-Cen Association

    Full text link
    We present an analysis of the WISE photometric data for 829 stars in the Sco-Cen OB2 association, using the latest high-mass membership probabilities. We detect infrared excesses associated with 135 BAF-type stars, 99 of which are secure Sco-Cen members. There is a clear increase in excess fraction with membership probability, which can be fitted linearly. We infer that 41+-5% of Sco-Cen OB2 BAF stars to have excesses, while the field star excess fraction is consistent with zero. This is the first time that the probability of non-membership has been used in the calculation of excess fractions for young stars. We do not observe any significant change in excess fraction between the three subgroups. Within our sample, we have observed that B-type association members have a significantly smaller excess fraction than A and F-type association members.Comment: 5 Pages, 3 figure, 4 tables. Complete table 1 included. Accepted to MNRAS Letter

    Projected Rotational Velocities and Stellar Characterization of 350 B Stars in the Nearby Galactic Disk

    Full text link
    Projected rotational velocities (vsini) are presented for a sample of 350 early B-type main sequence stars in the nearby Galactic disk. The stars are located within ~1.5 kpc from the Sun, and the great majority within 700 pc. The analysis is based on high-resolution spectra obtained with the MIKE spectrograph on the Magellan Clay 6.5-m telescope at the Las Campanas Observatory in Chile.Spectral types were estimated based on relative intensities of some key line absorption ratios and comparisons to synthetic spectra. Effective temperatures were estimated from the reddening-free Q index, and projected rotational velocities were then determined via interpolation on a published grid that correlates the synthetic full width at half maximum of the He I lines at 4026, 4388 and 4471 A with vsini. As the sample has been selected solely on the basis of spectral types it contains an selection of B stars in the field, in clusters, and in OB associations. The vsini distribution obtained for the entire sample is found to be essentially flat for vsini values between 0-150 km/s, with only a modest peak at low projected rotational velocities. Considering subsamples of stars, there appears to be a gradation in the vsini distribution with the field stars presenting a larger fraction of the slow rotators and the cluster stars distribution showing an excess of stars with vsini between 70 and 130 km/s. Furthermore, for a subsample of potential runaway stars we find that the vsini distribution resembles the distribution seen in denser environments, which could suggest that these runaway stars have been subject to dynamical ejection mechanisms.Comment: 38 pages, 11 figures. Complete sample table. AJ accepte

    The HARPS search for southern extra-solar planets. XX. Planets around the active star BD-08:2823

    Full text link
    We report the detection of a planetary system around BD-08:2823, that includes at least one Uranus-mass planet and one Saturn-mass planet. This discovery serendipitously originates from a search for planetary transits in the Hipparcos photometry database. This program preferentially selected active stars and did not allow the detection of new transiting planets. It allowed however the identification of the K3V star BD-08:2823 as a target harboring a multiplanet system, that we secured and characterized thanks to an intensive monitoring with the HARPS spectrograph at the 3.6-m ESO telescope in La Silla. The stellar activity level of BD-08:2823 complicates the analysis but does not prohibit the detection of two planets around this star. BD-08:2823b has a minimum mass of 14.4+/-2.1 M_Earth and an orbital period of 5.60 days, whereas BD-08:2823c has a minimum mass of 0.33+/-0.03 M_Jup and an orbital period of 237.6 days. This new system strengthens the fact that low-mass planets are preferentially found in multiplanetary systems, but not around high-metallicity stars as this is the case for massive planets. It also supports the belief that active stars should not be neglected in exoplanet searches, even when searching for low-mass planets.Comment: 10 pages, 8 figures, 3 tables, accepted for publication in A&

    Debris Disks in NGC 2547

    Full text link
    We have surveyed the 30 Myr-old cluster NGC 2547 for planetary debris disks using Spitzer. At 4.5-8 um we are sensitive to the photospheric level down to mid-M stars (0.2 Msol) and at 24 um to early-G stars (1.2 Msol). We find only two to four stars with excesses at 8 um out of ~400-500 cluster members, resulting in an excess fraction <~1 percent at this wavelength. By contrast, the excess fraction at 24 um is ~40 percent (for B-F types). Out of four late-type stars with excesses at 8 um two marginal ones are consistent with asteroid-like debris disks. Among stars with strong 8 um excesses one is possibly from a transitional disk, while another one can be a result of a catastrophic collision. Our survey demonstrates that the inner 0.1-1 AU parts of disks around solar-type stars clear out very thoroughly by 30 Myrs of age. Comparing with the much slower decay of excesses at 24 and 70 um, disks clear from the inside out, of order 10 Myr for the inner zones probed at 8 um compared with a hundred or more Myr for those probed with the two longer wavelengths.Comment: Accepted to ApJ, 29 pages, 13 figs. A Note in Proof concerning cluster's age was added in the original submission of 2007 July 19. Full Tables 1 and 2 in the electronic form together with the article with full resolution figures are available at http://www.astro.ufl.edu/~ngorlova/disksNGC2547

    Photometric Monitoring of Open Clusters I. The Survey

    Full text link
    Open clusters, which have age, abundance, and extinction information from studies of main-sequence turn off stars, are the ideal location in which to determine the mass-luminosity-radius relation for low-mass stars. We have undertaken a photometric monitoring survey of open clusters in the Galaxy designed to detect low-mass eclipsing binary systems through variations in their relative light curves. Our aim is to provide an improved calibration of the mass-luminosity-radius relation for low-mass stars and brown dwarfs, to test stellar structure and evolution models, and to help quantify the contribution of low-mass stars to the global mass census in the Galaxy. In this paper we present our survey, describing the data and outlining the analysis techniques. We study six nearby open clusters, with a range of ages from 0.2\sim 0.2 to 4 Gyr and metallicities from approximately solar to -0.2dex. We monitor a field-of-view of > 1 square degree per target cluster, well beyond the characteristic cluster radius, over timescales of hours, days, and months with a sampling rate optimised for the detection of eclipsing binaries with periods of hours to days. Our survey depth is designed to detect eclipse events in a binary with a primary star of \lesssim 0.3~M_{\sun}. Our data have a photometric precision of 3\sim 3 mmag at I16I\approx 16.Comment: 50 pages, 18 figures, accepted for publication in A

    A Constraint on brown dwarf formation via ejection: radial variation of the stellar and substellar mass function of the young open cluster IC2391

    Full text link
    Using the Wide Field Imager (WFI) at the ESO 2.2m telescope at La Silla and the CPAPIR camera at the CTIO 1.5m telescope at Cerro Tololo, we have performed an extensive, multiband photometric survey of the open cluster IC2391 (D~146pc, age~50Myr, solar metallicity). Here we present the results from our photometric survey and from a spectroscopic follow-up of the central part of the survey.Comment: 4 pages, 3 figures, to appear in the proceedings of the Cool Stars 15 conferenc

    A New Nearby Candidate Star Cluster in Ophiuchus at d = 170 pc

    Get PDF
    The recent discoveries of nearby star clusters and associations within a few hundred pc of the Sun, as well as the order of magnitude difference in the formation rates of the embedded and open cluster populations, suggests that additional poor stellar groups are likely to be found at surprisingly close distances to the Sun. Here I describe a new nearby stellar aggregate found by virtue of the parallel proper motions, similar trigonometric parallaxes, and consistent color-magnitude distribution of its early-type members. The 120 Myr-old group lies in Ophiuchus at dd \simeq 170 pc, with its most massive member being the 4th-magnitude post-MS B8II-III star μ\mu Oph. The group may have escaped previous notice due to its non-negligible extinction (AVA_V \simeq 0.9 mag). If the group was born with a normal initial mass function, and the nine B- and A-type systems represent a complete system of intermediate-mass stars, then the original population was probably of order \sim200 systems. The age and space motion of the new cluster are very similar to those of the Pleiades, α\alpha Per cluster, and AB Dor Moving Group, suggesting that these aggregates may have formed in the same star-forming complex some 108\sim10^8 yr ago.Comment: 23 pages, 3 figs., to appear in Nov. 2006 A
    corecore