577 research outputs found

    Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche.

    Get PDF
    Age at menarche is a marker of timing of puberty in females. It varies widely between individuals, is a heritable trait and is associated with risks for obesity, type 2 diabetes, cardiovascular disease, breast cancer and all-cause mortality. Studies of rare human disorders of puberty and animal models point to a complex hypothalamic-pituitary-hormonal regulation, but the mechanisms that determine pubertal timing and underlie its links to disease risk remain unclear. Here, using genome-wide and custom-genotyping arrays in up to 182,416 women of European descent from 57 studies, we found robust evidence (P < 5 × 10(-8)) for 123 signals at 106 genomic loci associated with age at menarche. Many loci were associated with other pubertal traits in both sexes, and there was substantial overlap with genes implicated in body mass index and various diseases, including rare disorders of puberty. Menarche signals were enriched in imprinted regions, with three loci (DLK1-WDR25, MKRN3-MAGEL2 and KCNK9) demonstrating parent-of-origin-specific associations concordant with known parental expression patterns. Pathway analyses implicated nuclear hormone receptors, particularly retinoic acid and γ-aminobutyric acid-B2 receptor signalling, among novel mechanisms that regulate pubertal timing in humans. Our findings suggest a genetic architecture involving at least hundreds of common variants in the coordinated timing of the pubertal transition

    Recombulator-X: A fast and user-friendly tool for estimating X chromosome recombination rates in forensic genetics

    Get PDF
    Genetic markers (especially short tandem repeats or STRs) located on the X chromosome are a valuable resource to solve complex kinship cases in forensic genetics in addition or alternatively to autosomal STRs. Groups of tightly linked markers are combined into haplotypes, thus increasing the discriminating power of tests. However, this approach requires precise knowledge of the recombination rates between adjacent markers. The International Society of Forensic Genetics recommends that recombination rate estimation on the X chromosome is performed from pedigree genetic data while taking into account the confounding effect of mutations. However, implementations that satisfy these requirements have several drawbacks: they were never publicly released, they are very slow and/or need cluster-level hardware and strong computational expertise to use. In order to address these key concerns we developed Recombulator-X, a new open-source Python tool. The most challenging issue, namely the running time, was addressed with dynamic programming techniques to greatly reduce the computational complexity of the algorithm. Compared to the previous methods, Recombulator-X reduces the estimation times from weeks or months to less than one hour for typical datasets. Moreover, the estimation process, including preprocessing, has been streamlined and packaged into a simple command-line tool that can be run on a normal PC. Where previous approaches were limited to small panels of STR markers (up to 15), our tool can handle greater numbers (up to 100) of mixed STR and non-STR markers. In conclusion, Recombulator-X makes the estimation process much simpler, faster and accessible to researchers without a computational background, hopefully spurring increased adoption of best practices

    Privacy and ethical challenges of the Amelogenin sex test in forensic paternity/kinship analysis: Insights from a 13-year case history

    Get PDF
    The Amelogenin sex test included in forensic DNA typing kits has the potential to identify congenital conditions such as differences/disorders of sex development (DSD). It can also reveal mismatches between genotypic sex and gender marker in identity documents of transgender persons who obtained legal gender recognition. In a 13-year case history of paternity/kinship tests, involving n = 962 females and n = 1001 males, two mismatches between Amelogenin sex test (male) and gender marker (female), and three cases of chromosomal DSD (Klinefelter syndrome) were observed. The concrete risk of observing Amelogenin anomalies, their potential causes, and the context in which they occur (forensic, i.e. non-medical) mean that laboratory operators are called to strike a complex balance between privacy interests and individual health rights when providing preliminary information and reporting Amelogenin incidental findings. This case history argues for the need of a more responsible approach towards the Amelogenin sex test in the forensic community
    corecore