577 research outputs found
Recommended from our members
On the Interface Between LENS® Deposited Stainless Steel 304L Repair Geometry and Cast or Machined Components
Laser Engineered Net Shaping™ (LENS®) is being evaluated for use as a metal component
repair/modification process. A component of the evaluation is to better understand the characteristics of
the interface between LENS deposited material and the substrate on which it is deposited. A processing
and metallurgical evaluation was made on LENS processed material fabricated for component
qualification tests. A process parameter evaluation was used to determine optimum build parameters
and these parameters were used in the fabrication of tensile test specimens to study the characteristics of
the interface between LENS deposited material and several types of substrates. Analyses of the
interface included mechanical properties, microstructure, and metallurgical integrity. Test samples
were determined for a variety of geometric configurations associated with interfaces between LENS
deposited material and both wrought base material or previously deposited LENS material. Thirteen
different interface configurations were fabricated for evaluation representing a spectrum of deposition
conditions from complete part build, to hybrid substrate-LENS builds, to repair builds for damaged or
re-designed housings. Good mechanical properties and full density were observed for all configurations.
When tested to failure, fracture occurred by ductile microvoid coalescence. The repair and hybrid
interfaces showed the same metallurgical integrity as, and had properties similar to, monolithic LENS
deposits.Mechanical Engineerin
Recommended from our members
Thermal Behavior in the Lens Process
Direct laser metal deposition processing is a promising manufacturing technology which
could significantly impact the length oftime between initial concept and finished part. For
adoption ofthis technology in the manufacturing environment, further understanding is required
to ensure robust components with appropriate properties are routinelyfabricated. This requires a
complete understanding ofthe thermal history.during part fabrication and control ofthis behavior.
This paper will describe our research to understand the thermal behavior for the Laser Engineered
Net Shaping (LENS) process!, where a component is fabricated by focusing a laser beam onto a
substrate to create a molten pool in which powder particles are simultaneously injected to build
each layer. The substrate is moved beneath the l~ser beam to deposit a thin cross section, thereby
creating the desired geometry for each layer. After deposition of each layer, the powder delivery
nozzle and focusing lens assembly is incremented in the positive Z-direction, thereby building a
three dimensional component layer additively.
It is important to control the thermal behavior to reproducibly fabricate parts. The
ultimate intent is to monitor the thermal signatures and to incorporate sensors and feedback
algorithms to control part fabrication. With appropriate control, the geometric properties
(accuracy, surface finish, low warpage) as well as the materials' properties (e.g. strength,
ductility) of a component can be dialed into the part through the fabrication parameters. Thermal
monitoring techniques will be described, and their particular benefits highlighted. Preliminary
details in correlating thermal behavior with processing results will be discussed.Mechanical Engineerin
Recommended from our members
Multi-ancestry study of blood lipid levels identifies four loci interacting with physical activity.
Many genetic loci affect circulating lipid levels, but it remains unknown whether lifestyle factors, such as physical activity, modify these genetic effects. To identify lipid loci interacting with physical activity, we performed genome-wide analyses of circulating HDL cholesterol, LDL cholesterol, and triglyceride levels in up to 120,979 individuals of European, African, Asian, Hispanic, and Brazilian ancestry, with follow-up of suggestive associations in an additional 131,012 individuals. We find four loci, in/near CLASP1, LHX1, SNTA1, and CNTNAP2, that are associated with circulating lipid levels through interaction with physical activity; higher levels of physical activity enhance the HDL cholesterol-increasing effects of the CLASP1, LHX1, and SNTA1 loci and attenuate the LDL cholesterol-increasing effect of the CNTNAP2 locus. The CLASP1, LHX1, and SNTA1 regions harbor genes linked to muscle function and lipid metabolism. Our results elucidate the role of physical activity interactions in the genetic contribution to blood lipid levels
Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche.
Age at menarche is a marker of timing of puberty in females. It varies widely between individuals, is a heritable trait and is associated with risks for obesity, type 2 diabetes, cardiovascular disease, breast cancer and all-cause mortality. Studies of rare human disorders of puberty and animal models point to a complex hypothalamic-pituitary-hormonal regulation, but the mechanisms that determine pubertal timing and underlie its links to disease risk remain unclear. Here, using genome-wide and custom-genotyping arrays in up to 182,416 women of European descent from 57 studies, we found robust evidence (P < 5 × 10(-8)) for 123 signals at 106 genomic loci associated with age at menarche. Many loci were associated with other pubertal traits in both sexes, and there was substantial overlap with genes implicated in body mass index and various diseases, including rare disorders of puberty. Menarche signals were enriched in imprinted regions, with three loci (DLK1-WDR25, MKRN3-MAGEL2 and KCNK9) demonstrating parent-of-origin-specific associations concordant with known parental expression patterns. Pathway analyses implicated nuclear hormone receptors, particularly retinoic acid and γ-aminobutyric acid-B2 receptor signalling, among novel mechanisms that regulate pubertal timing in humans. Our findings suggest a genetic architecture involving at least hundreds of common variants in the coordinated timing of the pubertal transition
Recombulator-X: A fast and user-friendly tool for estimating X chromosome recombination rates in forensic genetics
Genetic markers (especially short tandem repeats or STRs) located on the X chromosome are a valuable resource to solve complex kinship cases in forensic genetics in addition or alternatively to autosomal STRs. Groups of tightly linked markers are combined into haplotypes, thus increasing the discriminating power of tests. However, this approach requires precise knowledge of the recombination rates between adjacent markers. The International Society of Forensic Genetics recommends that recombination rate estimation on the X chromosome is performed from pedigree genetic data while taking into account the confounding effect of mutations. However, implementations that satisfy these requirements have several drawbacks: they were never publicly released, they are very slow and/or need cluster-level hardware and strong computational expertise to use. In order to address these key concerns we developed Recombulator-X, a new open-source Python tool. The most challenging issue, namely the running time, was addressed with dynamic programming techniques to greatly reduce the computational complexity of the algorithm. Compared to the previous methods, Recombulator-X reduces the estimation times from weeks or months to less than one hour for typical datasets. Moreover, the estimation process, including preprocessing, has been streamlined and packaged into a simple command-line tool that can be run on a normal PC. Where previous approaches were limited to small panels of STR markers (up to 15), our tool can handle greater numbers (up to 100) of mixed STR and non-STR markers. In conclusion, Recombulator-X makes the estimation process much simpler, faster and accessible to researchers without a computational background, hopefully spurring increased adoption of best practices
Acquisition of antimicrobial-resistant E. coli isolated from dogs admitted to a veterinary teaching hospital
A reference database of forensic autosomal and gonosomal STR markers in the Tigray population of Ethiopia
Privacy and ethical challenges of the Amelogenin sex test in forensic paternity/kinship analysis: Insights from a 13-year case history
The Amelogenin sex test included in forensic DNA typing kits has the potential to identify congenital conditions such as differences/disorders of sex development (DSD). It can also reveal mismatches between genotypic sex and gender marker in identity documents of transgender persons who obtained legal gender recognition.
In a 13-year case history of paternity/kinship tests, involving n = 962 females and n = 1001 males, two
mismatches between Amelogenin sex test (male) and gender marker (female), and three cases of chromosomal DSD (Klinefelter syndrome) were observed.
The concrete risk of observing Amelogenin anomalies, their potential causes, and the context in which they
occur (forensic, i.e. non-medical) mean that laboratory operators are called to strike a complex balance between privacy interests and individual health rights when providing preliminary information and reporting Amelogenin incidental findings. This case history argues for the need of a more responsible approach towards the Amelogenin sex test in the forensic community
- …
