467 research outputs found
Direct Imaging of Slow, Stored, and Stationary EIT Polaritons
Stationary and slow light effects are of great interest for quantum
information applications. Using laser-cooled Rb87 atoms we have performed side
imaging of our atomic ensemble under slow and stationary light conditions,
which allows direct comparison with numerical models. The polaritions were
generated using electromagnetically induced transparency (EIT), with stationary
light generated using counter-propagating control fields. By controlling the
power ratio of the two control fields we show fine control of the group
velocity of the stationary light. We also compare the dynamics of stationary
light using monochromatic and bichromatic control fields. Our results show
negligible difference between the two situations, in contrast to previous work
in EIT based systems
The Role of Source Coherence in Atom Interferometery
The role of source cloud spatial coherence in a Mach-Zehnder type atom
interferometer is experimentally investigated. The visibility and contrast of a
Bose-Einstein condensate (BEC) and three thermal sources with varying spatial
coherence are compared as a function of interferometer time. At short times,
the fringe visibility of a BEC source approaches 100 % nearly independent of pi
pulse efficiency, while thermal sources have fringe visibilities limited to the
mirror efficiency. More importantly for precision measurement systems, the BEC
source maintains interference at interferometer times significantly beyond the
thermal source
80hk Momentum Separation with Bloch Oscillations in an Optically Guided Atom Interferometer
We demonstrate phase sensitivity in a horizontally guided,
acceleration-sensitive atom interferometer with a momentum separation of 80hk
between its arms. A fringe visibility of 7% is observed. Our coherent pulse
sequence accelerates the cold cloud in an optical waveguide, an inherently
scalable route to large momentum separation and high sensitivity. We maintain
coherence at high momentum separation due to both the transverse confinement
provided by the guide, and our use of optical delta-kick cooling on our
cold-atom cloud. We also construct a horizontal interferometric gradiometer to
measure the longitudinal curvature of our optical waveguide.Comment: 6 pages, 6 figure
A Bright Solitonic Matter-Wave Interferometer
We present the first realisation of a solitonic atom interferometer. A
Bose-Einstein condensate of atoms of rubidium-85 is loaded into a
horizontal optical waveguide. Through the use of a Feshbach resonance, the
-wave scattering length of the Rb atoms is tuned to a small negative
value. This attractive atomic interaction then balances the inherent
matter-wave dispersion, creating a bright solitonic matter wave. A Mach-Zehnder
interferometer is constructed by driving Bragg transitions with the use of an
optical lattice co-linear with the waveguide. Matter wave propagation and
interferometric fringe visibility are compared across a range of -wave
scattering values including repulsive, attractive and non-interacting values.
The solitonic matter wave is found to significantly increase fringe visibility
even compared with a non-interacting cloud.Comment: 6 pages, 4 figure
A quantum sensor: simultaneous precision gravimetry and magnetic gradiometry with a Bose-Einstein condensate
A Bose-Einstein condensate is used as an atomic source for a high precision
sensor. A atom F=1 spinor condensate of Rb is released
into free fall for up to ms and probed with a Mach-Zehnder atom
interferometer based on Bragg transitions. The Bragg interferometer
simultaneously addresses the three magnetic states, , facilitating a simultaneous measurement of the acceleration due
to gravity with an asymptotic precision of g/g and
the magnetic field gradient to a precision pT/m
Non-destructive shadowgraph imaging of ultracold atoms
An imaging system is presented that is capable of far-detuned non-destructive
imaging of a Bose-Einstein condensate with the signal proportional to the
second spatial derivative of the density. Whilst demonstrated with application
to , the technique generalizes to other atomic species and is
shown to be capable of a signal to noise of at GHz detuning with
in-trap images showing no observable heating or atom loss. The technique
is also applied to the observation of individual trajectories of stochastic
dynamics inaccessible to single shot imaging. Coupled with a fast optical phase
lock loop, the system is capable of dynamically switching to resonant
absorption imaging during the experiment.Comment: 4 pages, 5 figure
- …
