9,543 research outputs found
Estimating the causal effect of a time-varying treatment on time-to-event using structural nested failure time models
In this paper we review an approach to estimating the causal effect of a
time-varying treatment on time to some event of interest. This approach is
designed for the situation where the treatment may have been repeatedly adapted
to patient characteristics, which themselves may also be time-dependent. In
this situation the effect of the treatment cannot simply be estimated by
conditioning on the patient characteristics, as these may themselves be
indicators of the treatment effect. This so-called time-dependent confounding
is typical in observational studies. We discuss a new class of failure time
models, structural nested failure time models, which can be used to estimate
the causal effect of a time-varying treatment, and present methods for
estimating and testing the parameters of these models
Betti number signatures of homogeneous Poisson point processes
The Betti numbers are fundamental topological quantities that describe the
k-dimensional connectivity of an object: B_0 is the number of connected
components and B_k effectively counts the number of k-dimensional holes.
Although they are appealing natural descriptors of shape, the higher-order
Betti numbers are more difficult to compute than other measures and so have not
previously been studied per se in the context of stochastic geometry or
statistical physics.
As a mathematically tractable model, we consider the expected Betti numbers
per unit volume of Poisson-centred spheres with radius alpha. We present
results from simulations and derive analytic expressions for the low intensity,
small radius limits of Betti numbers in one, two, and three dimensions. The
algorithms and analysis depend on alpha-shapes, a construction from
computational geometry that deserves to be more widely known in the physics
community.Comment: Submitted to PRE. 11 pages, 10 figure
Aerodynamic characteristics at Mach numbers of 1.5, 1.8, and 2.0 of a blended wing-body configuration with and without integral canards
An exploratory, experimental, and theoretical investigation was made of a cambered, twisted, and blended wing-body concept with and without integral canard surfaces. Theoretical calculations of the static longitudinal and lateral aerodynamic characteristics of the wing-body configurations were compared with the characteristics obtained from tests of a model in the Langley Unitary Plan wind tunnel. Mach numbers of 1.5, 1.8, and 2.0 and a Reynolds number per meter of 6.56 million were used in the calculations and tests. Overall results suggest that planform selection is extremely important and that the supplemental application of new calculation techniques should provide a process for the design of supersonic wings in which spanwise distribution of upwash and leading-edge thrust might be rationally controlled and exploited
The Role of Source Coherence in Atom Interferometery
The role of source cloud spatial coherence in a Mach-Zehnder type atom
interferometer is experimentally investigated. The visibility and contrast of a
Bose-Einstein condensate (BEC) and three thermal sources with varying spatial
coherence are compared as a function of interferometer time. At short times,
the fringe visibility of a BEC source approaches 100 % nearly independent of pi
pulse efficiency, while thermal sources have fringe visibilities limited to the
mirror efficiency. More importantly for precision measurement systems, the BEC
source maintains interference at interferometer times significantly beyond the
thermal source
Remote Detection of Saline Intrusion in a Coastal Aquifer Using Borehole Measurements of Self-Potential
Funded by NERC CASE studentship . Grant Number: NE/I018417/1Peer reviewedPublisher PD
- …
