9,543 research outputs found

    Estimating the causal effect of a time-varying treatment on time-to-event using structural nested failure time models

    Full text link
    In this paper we review an approach to estimating the causal effect of a time-varying treatment on time to some event of interest. This approach is designed for the situation where the treatment may have been repeatedly adapted to patient characteristics, which themselves may also be time-dependent. In this situation the effect of the treatment cannot simply be estimated by conditioning on the patient characteristics, as these may themselves be indicators of the treatment effect. This so-called time-dependent confounding is typical in observational studies. We discuss a new class of failure time models, structural nested failure time models, which can be used to estimate the causal effect of a time-varying treatment, and present methods for estimating and testing the parameters of these models

    Betti number signatures of homogeneous Poisson point processes

    Full text link
    The Betti numbers are fundamental topological quantities that describe the k-dimensional connectivity of an object: B_0 is the number of connected components and B_k effectively counts the number of k-dimensional holes. Although they are appealing natural descriptors of shape, the higher-order Betti numbers are more difficult to compute than other measures and so have not previously been studied per se in the context of stochastic geometry or statistical physics. As a mathematically tractable model, we consider the expected Betti numbers per unit volume of Poisson-centred spheres with radius alpha. We present results from simulations and derive analytic expressions for the low intensity, small radius limits of Betti numbers in one, two, and three dimensions. The algorithms and analysis depend on alpha-shapes, a construction from computational geometry that deserves to be more widely known in the physics community.Comment: Submitted to PRE. 11 pages, 10 figure

    Supersonic aircraft Patent

    Get PDF
    Design of supersonic aircraft with novel fixed, swept wing planfor

    Aerodynamic characteristics at Mach numbers of 1.5, 1.8, and 2.0 of a blended wing-body configuration with and without integral canards

    Get PDF
    An exploratory, experimental, and theoretical investigation was made of a cambered, twisted, and blended wing-body concept with and without integral canard surfaces. Theoretical calculations of the static longitudinal and lateral aerodynamic characteristics of the wing-body configurations were compared with the characteristics obtained from tests of a model in the Langley Unitary Plan wind tunnel. Mach numbers of 1.5, 1.8, and 2.0 and a Reynolds number per meter of 6.56 million were used in the calculations and tests. Overall results suggest that planform selection is extremely important and that the supplemental application of new calculation techniques should provide a process for the design of supersonic wings in which spanwise distribution of upwash and leading-edge thrust might be rationally controlled and exploited

    The Role of Source Coherence in Atom Interferometery

    Full text link
    The role of source cloud spatial coherence in a Mach-Zehnder type atom interferometer is experimentally investigated. The visibility and contrast of a Bose-Einstein condensate (BEC) and three thermal sources with varying spatial coherence are compared as a function of interferometer time. At short times, the fringe visibility of a BEC source approaches 100 % nearly independent of pi pulse efficiency, while thermal sources have fringe visibilities limited to the mirror efficiency. More importantly for precision measurement systems, the BEC source maintains interference at interferometer times significantly beyond the thermal source
    corecore