6,877 research outputs found
Estimating the causal effect of a time-varying treatment on time-to-event using structural nested failure time models
In this paper we review an approach to estimating the causal effect of a
time-varying treatment on time to some event of interest. This approach is
designed for the situation where the treatment may have been repeatedly adapted
to patient characteristics, which themselves may also be time-dependent. In
this situation the effect of the treatment cannot simply be estimated by
conditioning on the patient characteristics, as these may themselves be
indicators of the treatment effect. This so-called time-dependent confounding
is typical in observational studies. We discuss a new class of failure time
models, structural nested failure time models, which can be used to estimate
the causal effect of a time-varying treatment, and present methods for
estimating and testing the parameters of these models
Longitudinal aerodynamic characteristics of an elliptical body with a horizontal tail at Mach numbers from 2.3 to 4.63
Longitudinal aerodynamic characteristics of a configuration consisting of an elliptical body with an in plane horizontal tail were investigated. The tests were conducted at Mach numbers of 2.3, 2.96, 4.0, and 4.63. In some cases, the configuration with negative tail deflections yielded higher values of maximum lift drag ratio than did the configuration with an undeflected tail. This was due to body upwash acting on the tail and producing an additional lift increment with essentially no drag penalty. Linear theory methods used to estimate some of the longitudinal aerodynamic characteristics of the model yielded results which compared well with experimental data for all Mach numbers in this investigation and for both small angles of attack and larger angles of attack where nonlinear (vortex) flow phenomena were present
Supersonic wings with significant leading-edge thrust at cruise
Experimental/theoretical correlations are presented which show that significant levels of leading edge thrust are possible at supersonic speeds for certain planforms which match the theoretical thrust distribution potential with the supporting airfoil geometry. The analytical process employed spanwise distribution of both it and/or that component of full theoretical thrust which acts as vortex lift. Significantly improved aerodynamic performance in the moderate supersonic speed regime is indicated
Effect of emerging technology on a convertible, business/interceptor, supersonic-cruise jet
This study was initiated to assess the feasibility of an eight-passenger, supersonic-cruise long range business jet aircraft that could be converted into a military missile carrying interceptor. The baseline passenger version has a flight crew of two with cabin space for four rows of two passenger seats plus baggage and lavatory room in the aft cabin. The ramp weight is 61,600 pounds with an internal fuel capacity of 30,904 pounds. Utilizing an improved version of a current technology low-bypass ratio turbofan engine, range is 3,622 nautical miles at Mach 2.0 cruise and standard day operating conditions. Balanced field takeoff distance is 6,600 feet and landing distance is 5,170 feet at 44,737 pounds. The passenger section from aft of the flight crew station to the aft pressure bulkhead in the cabin was modified for the interceptor version. Bomb bay type doors were added and volume is sufficient for four advanced air-to-air missiles mounted on a rotary launcher. Missile volume was based on a Phoenix type missile with a weight of 910 pounds per missile for a total payload weight of 3,640 pounds. Structural and equipment weights were adjusted and result in a ramp weight of 63,246 pounds with a fuel load of 30,938 pounds. Based on a typical intercept mission flight profile, the resulting radius is 1,609 nautical miles at a cruise Mach number of 2.0
Aerodynamic characteristics at Mach numbers of 1.5, 1.8, and 2.0 of a blended wing-body configuration with and without integral canards
An exploratory, experimental, and theoretical investigation was made of a cambered, twisted, and blended wing-body concept with and without integral canard surfaces. Theoretical calculations of the static longitudinal and lateral aerodynamic characteristics of the wing-body configurations were compared with the characteristics obtained from tests of a model in the Langley Unitary Plan wind tunnel. Mach numbers of 1.5, 1.8, and 2.0 and a Reynolds number per meter of 6.56 million were used in the calculations and tests. Overall results suggest that planform selection is extremely important and that the supplemental application of new calculation techniques should provide a process for the design of supersonic wings in which spanwise distribution of upwash and leading-edge thrust might be rationally controlled and exploited
Control Group Design: Enhancing Rigor in Research of Mind-Body Therapies for Depression
Although a growing body of research suggests that mind-body therapies may be appropriate to integrate into the treatment of depression, studies consistently lack methodological sophistication particularly in the area of control groups. In order to better understand the relationship between control group selection and methodological rigor, we provide a brief review of the literature on control group design in yoga and tai chi studies for depression, and we discuss challenges we have faced in the design of control groups for our recent clinical trials of these mind-body complementary therapies for women with depression. To address the multiple challenges of research about mind-body therapies, we suggest that researchers should consider 4 key questions: whether the study design matches the research question; whether the control group addresses performance, expectation, and detection bias; whether the control group is ethical, feasible, and attractive; and whether the control group is designed to adequately control for nonspecific intervention effects. Based on these questions, we provide specific recommendations about control group design with the goal of minimizing bias and maximizing validity in future research
Application of near-term technology to a Mach 2.0 variable-sweep-wing, supersonic-cruise executive jet
The impact of variable sweep wing technology with relaxed static stability requirements on a supersonic-cruise executive jet with transatlantic range was assessed. The baseline vehicle utilized modified, current-technology engines and titanium structures produced with superplastic forming and diffusion bonding; this vehicle meets study requirements for both supersonic-cruise and low-speed characteristics. The baseline concept has a ramp weight of 64,500 pounds with a crew of two and eight passengers. Its Mach 2.0 cruise range is nearly 3,500 nautical miles; its Mach 0.9 cruise range is over 5,000 nautical miles. Takeoff, landing, and balanced field length requirements were calculated for a composite variant and are all less than 5,000 feet
Quantum projection noise limited interferometry with coherent atoms in a Ramsey type setup
Every measurement of the population in an uncorrelated ensemble of two-level
systems is limited by what is known as the quantum projection noise limit.
Here, we present quantum projection noise limited performance of a Ramsey type
interferometer using freely propagating coherent atoms. The experimental setup
is based on an electro-optic modulator in an inherently stable Sagnac
interferometer, optically coupling the two interfering atomic states via a
two-photon Raman transition. Going beyond the quantum projection noise limit
requires the use of reduced quantum uncertainty (squeezed) states. The
experiment described demonstrates atom interferometry at the fundamental noise
level and allows the observation of possible squeezing effects in an atom
laser, potentially leading to improved sensitivity in atom interferometers.Comment: 8 pages, 8 figures, published in Phys. Rev.
- …
