1,319 research outputs found
Uniform random generation of large acyclic digraphs
Directed acyclic graphs are the basic representation of the structure
underlying Bayesian networks, which represent multivariate probability
distributions. In many practical applications, such as the reverse engineering
of gene regulatory networks, not only the estimation of model parameters but
the reconstruction of the structure itself is of great interest. As well as for
the assessment of different structure learning algorithms in simulation
studies, a uniform sample from the space of directed acyclic graphs is required
to evaluate the prevalence of certain structural features. Here we analyse how
to sample acyclic digraphs uniformly at random through recursive enumeration,
an approach previously thought too computationally involved. Based on
complexity considerations, we discuss in particular how the enumeration
directly provides an exact method, which avoids the convergence issues of the
alternative Markov chain methods and is actually computationally much faster.
The limiting behaviour of the distribution of acyclic digraphs then allows us
to sample arbitrarily large graphs. Building on the ideas of recursive
enumeration based sampling we also introduce a novel hybrid Markov chain with
much faster convergence than current alternatives while still being easy to
adapt to various restrictions. Finally we discuss how to include such
restrictions in the combinatorial enumeration and the new hybrid Markov chain
method for efficient uniform sampling of the corresponding graphs.Comment: 15 pages, 2 figures. To appear in Statistics and Computin
Diffusive limits on the Penrose tiling
In this paper random walks on the Penrose lattice are investigated. Heat
kernel estimates and the invariance principle are shown
Nonlinear stability of solitons against strong external perturbations
We study soliton stability under the action of strong external perturbations. Limits on the weak perturbation approach are established with the help of average Lagrangian methods and full simulations. We found that for the same relative perturbation, larger amplitude solitons develop instability earlier than weaker amplitude solitons.F. B. Rizzato, G. I. de Oliveira, and A. C.-L. Chia
Stress corrosion cracking in Al-Zn-Mg-Cu aluminum alloys in saline environments
Copyright 2013 ASM International. This paper was published in Metallurgical and Materials Transactions A, 44A(3), 1230 - 1253, and is made
available as an electronic reprint with the permission of ASM International. One print or electronic copy may
be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via
electronic or other means, duplications of any material in this paper for a fee or for commercial purposes, or
modification of the content of this paper are prohibited.Stress corrosion cracking of Al-Zn-Mg-Cu (AA7xxx) aluminum alloys exposed to saline environments at temperatures ranging from 293 K to 353 K (20 °C to 80 °C) has been reviewed with particular attention to the influences of alloy composition and temper, and bulk and local environmental conditions. Stress corrosion crack (SCC) growth rates at room temperature for peak- and over-aged tempers in saline environments are minimized for Al-Zn-Mg-Cu alloys containing less than ~8 wt pct Zn when Zn/Mg ratios are ranging from 2 to 3, excess magnesium levels are less than 1 wt pct, and copper content is either less than ~0.2 wt pct or ranging from 1.3 to 2 wt pct. A minimum chloride ion concentration of ~0.01 M is required for crack growth rates to exceed those in distilled water, which insures that the local solution pH in crack-tip regions can be maintained at less than 4. Crack growth rates in saline solution without other additions gradually increase with bulk chloride ion concentrations up to around 0.6 M NaCl, whereas in solutions with sufficiently low dichromate (or chromate), inhibitor additions are insensitive to the bulk chloride concentration and are typically at least double those observed without the additions. DCB specimens, fatigue pre-cracked in air before immersion in a saline environment, show an initial period with no detectible crack growth, followed by crack growth at the distilled water rate, and then transition to a higher crack growth rate typical of region 2 crack growth in the saline environment. Time spent in each stage depends on the type of pre-crack (“pop-in” vs fatigue), applied stress intensity factor, alloy chemistry, bulk environment, and, if applied, the external polarization. Apparent activation energies (E a) for SCC growth in Al-Zn-Mg-Cu alloys exposed to 0.6 M NaCl over the temperatures ranging from 293 K to 353 K (20 °C to 80 °C) for under-, peak-, and over-aged low-copper-containing alloys (~0.8 wt pct), they are typically ranging from 20 to 40 kJ/mol for under- and peak-aged alloys, and based on limited data, around 85 kJ/mol for over-aged tempers. This means that crack propagation in saline environments is most likely to occur by a hydrogen-related process for low-copper-containing Al-Zn-Mg-Cu alloys in under-, peak- and over-aged tempers, and for high-copper alloys in under- and peak-aged tempers. For over-aged high-copper-containing alloys, cracking is most probably under anodic dissolution control. Future stress corrosion studies should focus on understanding the factors that control crack initiation, and insuring that the next generation of higher performance Al-Zn-Mg-Cu alloys has similar longer crack initiation times and crack propagation rates to those of the incumbent alloys in an over-aged condition where crack rates are less than 1 mm/month at a high stress intensity factor
Close-packed dimers on the line: diffraction versus dynamical spectrum
The translation action of \RR^{d} on a translation bounded measure
leads to an interesting class of dynamical systems, with a rather rich spectral
theory. In general, the diffraction spectrum of , which is the carrier
of the diffraction measure, live on a subset of the dynamical spectrum. It is
known that, under some mild assumptions, a pure point diffraction spectrum
implies a pure point dynamical spectrum (the opposite implication always being
true). For other systems, the diffraction spectrum can be a proper subset of
the dynamical spectrum, as was pointed out for the Thue-Morse sequence (with
singular continuous diffraction) in \cite{EM}. Here, we construct a random
system of close-packed dimers on the line that have some underlying long-range
periodic order as well, and display the same type of phenomenon for a system
with absolutely continuous spectrum. An interpretation in terms of `atomic'
versus `molecular' spectrum suggests a way to come to a more general
correspondence between these two types of spectra.Comment: 14 pages, with some additions and improvement
Finite Temperature Properties of Quantum Antiferromagnets in a Uniform Magnetic Field in One and Two Dimensions
Consider a -dimensional antiferromagnet with a quantum disordered ground
state and a gap to bosonic excitations with non-zero spin. In a finite external
magnetic field, this antiferromagnet will undergo a phase transition to a
ground state with non-zero magnetization, describable as the condensation of a
dilute gas of bosons. The finite temperature properties of the Bose gas in the
vicinity of this transition are argued to obey a hypothesis of ZERO
SCALE-FACTOR UNIVERSALITY for , with logarithmic violations in .
Scaling properties of various experimental observables are computed in an
expansion in , and exactly in .Comment: 27 pages, REVTEX 3.0, 8 Postscript figures appended, YCTP-xyz
The vibrational spectra and structures of hexachlorodisilazane and hexamethyldisilazane
The spectroscopic and structural investigations of haxachlorodisilazane and hexamethyldisilazane are reported. According to their spectra, the structure of those molecules seem to be D3d. Generally, a rigid D3d is indistinguishable from an internal rotating D′3h according to vibrational spectra. However, in this case, the molecules appear to be D′3h structure with free rotation of SiX3(X=Cl, Me) groups
Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector
A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results
The importance of ligand–ligand interactions for molecular geometry and the ligand close-packing model
Josephson Coupling and Fiske Dynamics in Ferromagnetic Tunnel Junctions
We report on the fabrication of Nb/AlO_x/Pd_{0.82}Ni_{0.18}/Nb
superconductor/insulator/ferromagnetic metal/superconductor (SIFS) Josephson
junctions with high critical current densities, large normal resistance times
area products, high quality factors, and very good spatial uniformity. For
these junctions a transition from 0- to \pi-coupling is observed for a
thickness d_F ~ 6 nm of the ferromagnetic Pd_{0.82}Ni_{0.18} interlayer. The
magnetic field dependence of the \pi-coupled junctions demonstrates good
spatial homogeneity of the tunneling barrier and ferromagnetic interlayer.
Magnetic characterization shows that the Pd_{0.82}Ni_{0.18} has an out-of-plane
anisotropy and large saturation magnetization, indicating negligible dead
layers at the interfaces. A careful analysis of Fiske modes provides
information on the junction quality factor and the relevant damping mechanisms
up to about 400 GHz. Whereas losses due to quasiparticle tunneling dominate at
low frequencies, the damping is dominated by the finite surface resistance of
the junction electrodes at high frequencies. High quality factors of up to 30
around 200 GHz have been achieved. Our analysis shows that the fabricated
junctions are promising for applications in superconducting quantum circuits or
quantum tunneling experiments.Comment: 15 pages, 9 figure
- …
