1,030 research outputs found
Phosphoproteins and protein-kinase activity in isolated envelopes of pea (Pisum sativum L.) chloroplasts
A protein kinase was found in envelope membranes of purified pea (Pisum sativum L.) chloroplasts. Separation of the two envelope membranes showed that most of the enzyme activity was localized in the outer envelope. The kinase was activated by Mg2+ and inhibited by ADP and pyrophosphate. It showed no response to changes in pH in the physiological range (pH 7-8) or conventional protein substrates. Up to ten phosphorylated proteins could be detected in the envelope-membrane fraction. The molecular weights of these proteins, as determined by polyacrylamide-gel electrophoresis were: two proteins higher than 145 kDa, 97, 86, 62, 55, 46, 34 and 14 kDa. The 86-kDa band being the most pronounced. Experiments with separated inner and outer envelopes showed that most labeled proteins are also localized in the outer-envelope fraction. The results indicate a major function of the outer envelope in the communication between the chloroplast and the parent cell
Radio Observations of the January 20, 2005 X-Class Event
We present a multi-frequency and multi-instrument study of the 20 January
2005 event. We focus mainly on the complex radio signatures and their
association with the active phenomena taking place: flares, CMEs, particle
acceleration and magnetic restructuring. As a variety of energetic particle
accelerators and sources of radio bursts are present, in the flare-ejecta
combination, we investigate their relative importance in the progress of this
event. The dynamic spectra of {Artemis-IV-Wind/Waves-Hiras with 2000 MHz-20 kHz
frequency coverage, were used to track the evolution of the event from the low
corona to the interplanetary space; these were supplemented with SXR, HXR and
gamma-ray recordings. The observations were compared with the expected radio
signatures and energetic-particle populations envisaged by the {Standard
Flare--CME model and the reconnection outflow termination shock model. A proper
combination of these mechanisms seems to provide an adequate model for the
interpretation of the observational data.Comment: Accepted for publication in Solar Physic
Stress corrosion cracking in Al-Zn-Mg-Cu aluminum alloys in saline environments
Copyright 2013 ASM International. This paper was published in Metallurgical and Materials Transactions A, 44A(3), 1230 - 1253, and is made
available as an electronic reprint with the permission of ASM International. One print or electronic copy may
be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via
electronic or other means, duplications of any material in this paper for a fee or for commercial purposes, or
modification of the content of this paper are prohibited.Stress corrosion cracking of Al-Zn-Mg-Cu (AA7xxx) aluminum alloys exposed to saline environments at temperatures ranging from 293 K to 353 K (20 °C to 80 °C) has been reviewed with particular attention to the influences of alloy composition and temper, and bulk and local environmental conditions. Stress corrosion crack (SCC) growth rates at room temperature for peak- and over-aged tempers in saline environments are minimized for Al-Zn-Mg-Cu alloys containing less than ~8 wt pct Zn when Zn/Mg ratios are ranging from 2 to 3, excess magnesium levels are less than 1 wt pct, and copper content is either less than ~0.2 wt pct or ranging from 1.3 to 2 wt pct. A minimum chloride ion concentration of ~0.01 M is required for crack growth rates to exceed those in distilled water, which insures that the local solution pH in crack-tip regions can be maintained at less than 4. Crack growth rates in saline solution without other additions gradually increase with bulk chloride ion concentrations up to around 0.6 M NaCl, whereas in solutions with sufficiently low dichromate (or chromate), inhibitor additions are insensitive to the bulk chloride concentration and are typically at least double those observed without the additions. DCB specimens, fatigue pre-cracked in air before immersion in a saline environment, show an initial period with no detectible crack growth, followed by crack growth at the distilled water rate, and then transition to a higher crack growth rate typical of region 2 crack growth in the saline environment. Time spent in each stage depends on the type of pre-crack (“pop-in” vs fatigue), applied stress intensity factor, alloy chemistry, bulk environment, and, if applied, the external polarization. Apparent activation energies (E a) for SCC growth in Al-Zn-Mg-Cu alloys exposed to 0.6 M NaCl over the temperatures ranging from 293 K to 353 K (20 °C to 80 °C) for under-, peak-, and over-aged low-copper-containing alloys (~0.8 wt pct), they are typically ranging from 20 to 40 kJ/mol for under- and peak-aged alloys, and based on limited data, around 85 kJ/mol for over-aged tempers. This means that crack propagation in saline environments is most likely to occur by a hydrogen-related process for low-copper-containing Al-Zn-Mg-Cu alloys in under-, peak- and over-aged tempers, and for high-copper alloys in under- and peak-aged tempers. For over-aged high-copper-containing alloys, cracking is most probably under anodic dissolution control. Future stress corrosion studies should focus on understanding the factors that control crack initiation, and insuring that the next generation of higher performance Al-Zn-Mg-Cu alloys has similar longer crack initiation times and crack propagation rates to those of the incumbent alloys in an over-aged condition where crack rates are less than 1 mm/month at a high stress intensity factor
Atmospheric Heating and Wind Acceleration: Results for Cool Evolved Stars based on Proposed Processes
A chromosphere is a universal attribute of stars of spectral type later than
~F5. Evolved (K and M) giants and supergiants (including the zeta Aurigae
binaries) show extended and highly turbulent chromospheres, which develop into
slow massive winds. The associated continuous mass loss has a significant
impact on stellar evolution, and thence on the chemical evolution of galaxies.
Yet despite the fundamental importance of those winds in astrophysics, the
question of their origin(s) remains unsolved. What sources heat a chromosphere?
What is the role of the chromosphere in the formation of stellar winds? This
chapter provides a review of the observational requirements and theoretical
approaches for modeling chromospheric heating and the acceleration of winds in
single cool, evolved stars and in eclipsing binary stars, including physical
models that have recently been proposed. It describes the successes that have
been achieved so far by invoking acoustic and MHD waves to provide a physical
description of plasma heating and wind acceleration, and discusses the
challenges that still remain.Comment: 46 pages, 9 figures, 1 table; modified and unedited manuscript;
accepted version to appear in: Giants of Eclipse, eds. E. Griffin and T. Ake
(Berlin: Springer
Exact Hypersurface-Homogeneous Solutions in Cosmology and Astrophysics
A framework is introduced which explains the existence and similarities of
most exact solutions of the Einstein equations with a wide range of sources for
the class of hypersurface-homogeneous spacetimes which admit a Hamiltonian
formulation. This class includes the spatially homogeneous cosmological models
and the astrophysically interesting static spherically symmetric models as well
as the stationary cylindrically symmetric models. The framework involves
methods for finding and exploiting hidden symmetries and invariant submanifolds
of the Hamiltonian formulation of the field equations. It unifies, simplifies
and extends most known work on hypersurface-homogeneous exact solutions. It is
shown that the same framework is also relevant to gravitational theories with a
similar structure, like Brans-Dicke or higher-dimensional theories.Comment: 41 pages, REVTEX/LaTeX 2.09 file (don't use LaTeX2e !!!) Accepted for
publication in Phys. Rev.
Breakdown of correspondence in chaotic systems: Ehrenfest versus localization times
Breakdown of quantum-classical correspondence is studied on an experimentally
realizable example of one-dimensional periodically driven system. Two relevant
time scales are identified in this system: the short Ehrenfest time t_h and the
typically much longer localization time scale T_L. It is shown that
surprisingly weak modification of the Hamiltonian may eliminate the more
dramatic symptoms of localization without effecting the more subtle but
ubiquitous and rapid loss of correspondence at t_h.Comment: 4 pages, 5 figures, replaced with a version submitted to PR
Appointments, pay and performance in UK boardrooms by gender
This article uses UK data to examine issues regarding the scarcity of women in boardroom positions. The article examines appointments, pay and any associated productivity effects deriving from increased diversity. Evidence of gender-bias in the appointment of women as non-executive directors is found together with mixed evidence of discrimination in wages or fees paid. However, the article finds no support for the argument that gender diverse boards enhance corporate performance. Proposals in favour of greater board diversity may be best structured around the moral value of diversity, rather than with reference to an expectation of improved company performance
Computational Indistinguishability between Quantum States and Its Cryptographic Application
We introduce a computational problem of distinguishing between two specific
quantum states as a new cryptographic problem to design a quantum cryptographic
scheme that is "secure" against any polynomial-time quantum adversary. Our
problem, QSCDff, is to distinguish between two types of random coset states
with a hidden permutation over the symmetric group of finite degree. This
naturally generalizes the commonly-used distinction problem between two
probability distributions in computational cryptography. As our major
contribution, we show that QSCDff has three properties of cryptographic
interest: (i) QSCDff has a trapdoor; (ii) the average-case hardness of QSCDff
coincides with its worst-case hardness; and (iii) QSCDff is computationally at
least as hard as the graph automorphism problem in the worst case. These
cryptographic properties enable us to construct a quantum public-key
cryptosystem, which is likely to withstand any chosen plaintext attack of a
polynomial-time quantum adversary. We further discuss a generalization of
QSCDff, called QSCDcyc, and introduce a multi-bit encryption scheme that relies
on similar cryptographic properties of QSCDcyc.Comment: 24 pages, 2 figures. We improved presentation, and added more detail
proofs and follow-up of recent wor
Long-Time Behavior of Macroscopic Quantum Systems: Commentary Accompanying the English Translation of John von Neumann's 1929 Article on the Quantum Ergodic Theorem
The renewed interest in the foundations of quantum statistical mechanics in
recent years has led us to study John von Neumann's 1929 article on the quantum
ergodic theorem. We have found this almost forgotten article, which until now
has been available only in German, to be a treasure chest, and to be much
misunderstood. In it, von Neumann studied the long-time behavior of macroscopic
quantum systems. While one of the two theorems announced in his title, the one
he calls the "quantum H-theorem", is actually a much weaker statement than
Boltzmann's classical H-theorem, the other theorem, which he calls the "quantum
ergodic theorem", is a beautiful and very non-trivial result. It expresses a
fact we call "normal typicality" and can be summarized as follows: For a
"typical" finite family of commuting macroscopic observables, every initial
wave function from a micro-canonical energy shell so evolves that for
most times in the long run, the joint probability distribution of these
observables obtained from is close to their micro-canonical
distribution.Comment: 34 pages LaTeX, no figures; v2: minor improvements and additions. The
English translation of von Neumann's article is available as arXiv:1003.213
Double-Spin Asymmetry in the Cross Section for Exclusive rho^0 Production in Lepton-Proton Scattering
Evidence for a positive longitudinal double-spin asymmetry = 0.24
+-0.11 (stat) +-0.02 (syst) in the cross section for exclusive diffractive
rho^0(770) vector meson production in polarised lepton-proton scattering was
observed by the HERMES experiment. The longitudinally polarised 27.56 GeV HERA
positron beam was scattered off a longitudinally polarised pure hydrogen gas
target. The average invariant mass of the photon-proton system has a value of
= 4.9 GeV, while the average negative squared four-momentum of the virtual
photon is = 1.7 GeV^2. The ratio of the present result to the
corresponding spin asymmetry in inclusive deep-inelastic scattering is in
agreement with an early theoretical prediction based on the generalised vector
meson dominance model.Comment: 10 pages, 4 embedded figures, LaTe
- …
