12,549 research outputs found
Estimates of tropical bromoform emissions using an inversion method
Abstract. Bromine plays an important role in ozone chemistry in both the troposphere and stratosphere. When measured by mass, bromoform (CHBr3) is thought to be the largest organic source of bromine to the atmosphere. While seaweed and phytoplankton are known to be dominant sources, the size and the geographical distribution of CHBr3 emissions remains uncertain. Particularly little is known about emissions from the Maritime Continent, which have usually been assumed to be large, and which appear to be especially likely to reach the stratosphere. In this study we aim to reduce this uncertainty by combining the first multi-annual set of CHBr3 measurements from this region, and an inversion process, to investigate systematically the distribution and magnitude of CHBr3 emissions. The novelty of our approach lies in the application of the inversion method to CHBr3. We find that local measurements of a short-lived gas like CHBr3 can be used to constrain emissions from only a relatively small, sub-regional domain. We then obtain detailed estimates of CHBr3 emissions within this area, which appear to be relatively insensitive to the assumptions inherent in the inversion process. We extrapolate this information to produce estimated emissions for the entire tropics (defined as 20° S–20° N) of 225 Gg CHBr3 yr−1. The ocean in the area we base our extrapolations upon is typically somewhat shallower, and more biologically productive, than the tropical average. Despite this, our tropical estimate is lower than most other recent studies, and suggests that CHBr3 emissions in the coastline-rich Maritime Continent may not be stronger than emissions in other parts of the tropics.
M. Ashfold thanks the Natural Environment
Research Council (NERC) for a research studentship, and is
grateful for support through the ERC ACCI project (project
number 267760). N. Harris is supported by a NERC Advanced
Research Fellowship. This work was supported through the EU
SHIVA project, through the NERC OP3 project, and NERC
grants NE/F020341/1 and NE/J006246/1. We also acknowledge
the Department of Energy and Climate Change for their support
in the development of InTEM (contract GA0201). For field site
support we thank S.-M. Phang, A. A. Samah and M. S. M. Nadzir
of Universiti Malaya, S. Ong and H. E. Ung of Global Satria,
Maznorizan Mohamad, L. K. Peng and S. E. Yong of the Malaysian
Meteorological Department, the Sabah Foundation, the Danum
Valley Field Centre and the Royal Society. This paper constitutes
publication no. 613 of the Royal Society South East Asia Rainforest
Research Programme.This is the final published version. It first appeared at http://www.atmos-chem-phys.net/14/979/2014/acp-14-979-2014.html
Honey bee foraging distance depends on month and forage type
To investigate the distances at which honey bee foragers collect nectar and pollen, we analysed 5,484 decoded waggle dances made to natural forage sites to determine monthly foraging distance for each forage type. Firstly, we found significantly fewer overall dances made for pollen (16.8 %) than for non-pollen, presumably nectar (83.2 %; P < 2.2 × 10−23). When we analysed distance against month and forage type, there was a significant interaction between the two factors, which demonstrates that in some months, one forage type is collected at farther distances, but this would reverse in other months. Overall, these data suggest that distance, as a proxy for forage availability, is not significantly and consistently driven by need for one type of forage over the other
Automatic eduction and statistical analysis of coherent structures in the wall region of a confine plane
This paper describes a vortex detection algorithm used to expose and statistically characterize the
coherent flow patterns observable in the velocity vector fields measured by Particle Image
Velocimetry (PIV) in the impingement region of air curtains. The philosophy and the architecture of
this algorithm are presented. Its strengths and weaknesses are discussed. The results of a
parametrical analysis performed to assess the variability of the response of our algorithm to the 3
user-specified parameters in our eduction scheme are reviewed. The technique is illustrated in the
case of a plane turbulent impinging twin-jet with an opening ratio of 10. The corresponding jet
Reynolds number, based on the initial mean flow velocity U0 and the jet width e, is 14000. The
results of a statistical analysis of the size, shape, spatial distribution and energetic content of the
coherent eddy structures detected in the impingement region of this test flow are provided.
Although many questions remain open, new insights into the way these structures might form,
organize and evolve are given. Relevant results provide an original picture of the plane turbulent
impinging jet
Rapid and Accurate Assessment of GPCR-Ligand Interactions Using the Fragment Molecular Orbital-Based Density-Functional Tight-Binding Method
The reliable and precise evaluation of receptor–ligand interactions and pair-interaction energy is an essential element of rational drug design. While quantum mechanical (QM) methods have been a promising means by which to achieve this, traditional QM is not applicable for large biological systems due to its high computational cost. Here, the fragment molecular orbital (FMO) method has been used to accelerate QM calculations, and by combining FMO with the density-functional tight-binding (DFTB) method we are able to decrease computational cost 1000 times, achieving results in seconds, instead of hours. We have applied FMO-DFTB to three different GPCR–ligand systems. Our results correlate well with site directed mutagenesis data and findings presented in the published literature, demonstrating that FMO-DFTB is a rapid and accurate means of GPCR–ligand interactions
Black Holes in Gravity with Conformal Anomaly and Logarithmic Term in Black Hole Entropy
We present a class of exact analytic and static, spherically symmetric black
hole solutions in the semi-classical Einstein equations with Weyl anomaly. The
solutions have two branches, one is asymptotically flat and the other
asymptotically de Sitter. We study thermodynamic properties of the black hole
solutions and find that there exists a logarithmic correction to the well-known
Bekenstein-Hawking area entropy. The logarithmic term might come from non-local
terms in the effective action of gravity theories. The appearance of the
logarithmic term in the gravity side is quite important in the sense that with
this term one is able to compare black hole entropy up to the subleading order,
in the gravity side and in the microscopic statistical interpretation side.Comment: Revtex, 10 pages. v2: minor changes and to appear in JHE
Glucose-induced down regulation of thiamine transporters in the kidney proximal tubular epithelium produces thiamine insufficiency in diabetes
Increased renal clearance of thiamine (vitamin B1) occurs in experimental and clinical diabetes producing thiamine insufficiency mediated by impaired tubular re-uptake and linked to the development of diabetic nephropathy. We studied the mechanism of impaired renal re-uptake of thiamine in diabetes. Expression of thiamine transporter proteins THTR-1 and THTR-2 in normal human kidney sections examined by immunohistochemistry showed intense polarised staining of the apical, luminal membranes in proximal tubules for THTR-1 and THTR-2 of the cortex and uniform, diffuse staining throughout cells of the collecting duct for THTR-1 and THTR-2 of the medulla. Human primary proximal tubule epithelial cells were incubated with low and high glucose concentration, 5 and 26 mmol/l, respectively. In high glucose concentration there was decreased expression of THTR-1 and THTR-2 (transporter mRNA: −76% and −53% respectively, p<0.001; transporter protein −77% and −83% respectively, p<0.05), concomitant with decreased expression of transcription factor specificity protein-1. High glucose concentration also produced a 37% decrease in apical to basolateral transport of thiamine transport across cell monolayers. Intensification of glycemic control corrected increased fractional excretion of thiamine in experimental diabetes. We conclude that glucose-induced decreased expression of thiamine transporters in the tubular epithelium may mediate renal mishandling of thiamine in diabetes. This is a novel mechanism of thiamine insufficiency linked to diabetic nephropathy
Temporal variance of disturbance did not affect diversity and structure of a marine fouling community in north-eastern New Zealand
Natural heterogeneity in ecological parameters, like population abundance, is more widely recognized and investigated than variability in the processes that control these parameters. Experimental ecologists have focused mainly on the mean intensity of predictor variables and have largely ignored the potential to manipulate variances in processes, which can be considered explicitly in experimental designs to explore variation in causal mechanisms. In the present study, the effect of the temporal variance of disturbance on the diversity of marine assemblages was tested in a field experiment replicated at two sites on the northeast coast of New Zealand. Fouling communities grown on artificial settlement substrata experienced disturbance regimes that differed in their inherent levels of temporal variability and timing of disturbance events, while disturbance intensity was identical across all levels. Additionally, undisturbed assemblages were used as controls. After 150 days of experimental duration, the assemblages were then compared with regard to their species richness, abundance and structure. The disturbance effectively reduced the average total cover of the assemblages, but no consistent effect of variability in the disturbance regime on the assemblages was detected. The results of this study were corroborated by the outcomes from simultaneous replicate experiments carried out in each of eight different biogeographical regions around the world
A platform for efficient, thiol-stable conjugation to albumin's native single accessible cysteine
Herein we report the use of bromomaleimides for the construction of stable albumin conjugates via conjugation to its native, single accessible, cysteine followed by hydrolysis. Advantages over the classical maleimide approach are highlighted in terms of quantitative hydrolysis and absence of undesirable retro-Michael deconjugation
- …
