7,093 research outputs found

    Beyond crystallography: diffractive imaging using coherent x-ray light sources

    Get PDF
    X-ray crystallography has been central to the development of many fields of science over the past century. It has now matured to a point that as long as good-quality crystals are available, their atomic structure can be routinely determined in three dimensions. However, many samples in physics, chemistry, materials science, nanoscience, geology, and biology are noncrystalline, and thus their three-dimensional structures are not accessible by traditional x-ray crystallography. Overcoming this hurdle has required the development of new coherent imaging methods to harness new coherent x-ray light sources. Here we review the revolutionary advances that are transforming x-ray sources and imaging in the 21st century

    Hepatocellular carcinoma: Review of disease and tumor biomarkers.

    Get PDF
    © The Author(s) 2016.Hepatocellular carcinoma (HCC) is a common malignancy and now the second commonest global cause of cancer death. HCC tumorigenesis is relatively silent and patients experience late symptomatic presentation. As the option for curative treatments is limited to early stage cancers, diagnosis in non-symptomatic individuals is crucial. International guidelines advise regular surveillance of high-risk populations but the current tools lack sufficient sensitivity for early stage tumors on the background of a cirrhotic nodular liver. A number of novel biomarkers have now been suggested in the literature, which may reinforce the current surveillance methods. In addition, recent metabonomic and proteomic discoveries have established specific metabolite expressions in HCC, according to Warburgs phenomenon of altered energy metabolism. With clinical validation, a simple and non-invasive test from the serum or urine may be performed to diagnose HCC, particularly benefiting low resource regions where the burden of HCC is highest

    Ebola virus disease epidemic in West Africa: Lessons learned and issues arising from West African countries

    Get PDF
    © Royal College of Physicians 2015. All rights reserved.The current Ebola virus disease (EVD) outbreak ravaging three nations in West Africa has affected more than 14,000 persons and killed over 5,000. It is the longest and most widely spread Ebola epidemic ever seen. At the time of this overview (written November 2014), having affected eight different nations, Nigeria and Senegal were able to control and eliminate the virus within a record time. Ghana has successfully, to date, kept the virus away from the country, despite economic and social relationships with affected nations. What lessons can we learn from Nigeria, Senegal and Ghana in the current epidemic? How can the world improve the health systems in low- and middle-income countries to effectively manage future outbreaks? Recently, the Royal College of Physicians launched a new partnership with the West African College of Physicians to curtail the effects of HIV/AIDS, malaria and tuberculosis in the region. We believe that strengthened health systems, skilled human resources for health and national ownership of problems are key to effective management of outbreaks such as EVD

    Sustainable Health Development Goals (SHDG): breaking down the walls.

    No full text
    The worlds governments failed to achieve the Health for All 2000 goals from the Alma Ata Declaration of 1978. Although a lot of milestones have been covered since 2000, the worlds governing authorities are unlikely to achieve the current Millennium Development Goals (MDGs) which expire by the end of this year. The inability to achieve these goals may be linked to the multiplicity of health-related directives and fragmentation of health systems in many countries. However, with the proposed 17 sustainability development goals, health has only one universal aim: to ensure healthy lives and promote wellbeing for all at all ages. Accomplishing this will require a focus on health systems (system-thinking), commonization of services and full integration of services with total dismantling of vertical programs across the world

    Challenges of liver cancer: Future emerging tools in imaging and urinary biomarkers.

    No full text
    © The Author(s) 2015. Published by Baishideng Publishing Group Inc. All rights reserved.Chronic liver disease has become a global health problem as a result of the increasing incidence of viral hepatitis, obesity and alcohol misuse. Over the past three decades, in the United Kingdom alone, deaths from chronic liver disease have increased both in men and in women. Currently, 2.5% of deaths worldwide are attributed to liver disease and projected figures suggest a doubling in hospitalisation and associated mortality by 2020. Chronic liver diseases vary for clinical manifestations and natural history, with some individuals having relatively indolent disease and others with a rapidly progressive course. About 30% of patients affected by hepatitis C has a progressive disease and develop cirrhosis over a 20 years period from the infection, usually 5-10 years after initial medical presentation. The aim of the current therapeutic strategies is preventing the progression from hepatitis to fibrosis and subsequently, cirrhosis. Hepatic steatosis is a risk factor for chronic liver disease and is affecting about the half of patients who abuse alcohol. Moreover non-alcoholic fatty liver disease is part of the metabolic syndrome, associated with obesity, hypertension, type ? diabetes mellitus and dyslipidaemia, and a subgroup of patients develops non-alcoholic steatohepatitis and fibrosis with subsequent cirrhosis. The strengths and pitfalls of liver biopsy are discussed and a variety of new techniques to assess liver damage from transient elastography to experimental techniques, such as in vitro urinary nuclear magnetic resonance spectroscopy. Some of the techniques and tests described are already suitable for more widespread clinical application, as is the case with ultrasound-based liver diagnostics, but others, such as urinary metabonomics, requires a period of critical evaluation or development to take them from the research arena to clinical practice

    A Microscopic View on the Mott transition in Chromium-doped V2O3

    Get PDF
    V2O3 is the prototype system for the Mott transition, one of the most fundamental phenomena of electronic correlation. Temperature, doping or pressure induce a metal to insulator transition (MIT) between a paramagnetic metal (PM) and a paramagnetic insulator (PI). This or related MITs have a high technological potential, among others for intelligent windows and field effect transistors. However the spatial scale on which such transitions develop is not known in spite of their importance for research and applications. Here we unveil for the first time the MIT in Cr-doped V2O3 with submicron lateral resolution: with decreasing temperature, microscopic domains become metallic and coexist with an insulating background. This explains why the associated PM phase is actually a poor metal. The phase separation can be associated with a thermodynamic instability near the transition. This instability is reduced by pressure which drives a genuine Mott transition to an eventually homogeneous metallic state.Comment: Paper plus supplementary materia

    Two rapid assays for screening of patulin biodegradation

    Get PDF
    Artículo sobre distintos ensayos para comprobar la biodegradación de la patulinaThe mycotoxin patulin is produced by the blue mould pathogen Penicillium expansum in rotting apples during postharvest storage. Patulin is toxic to a wide range of organisms, including humans, animals, fungi and bacteria. Wash water from apple packing and processing houses often harbours patulin and fungal spores, which can contaminate the environment. Ubiquitous epiphytic yeasts, such as Rhodosporidium kratochvilovae strain LS11 which is a biocontrol agent of P. expansum in apples, have the capacity to resist the toxicity of patulin and to biodegrade it. Two non-toxic products are formed. One is desoxypatulinic acid. The aim of the work was to develop rapid, high-throughput bioassays for monitoring patulin degradation in multiple samples. Escherichia coli was highly sensitive to patulin, but insensitive to desoxypatulinic acid. This was utilized to develop a detection test for patulin, replacing time-consuming thin layer chromatography or high-performance liquid chromatography. Two assays for patulin degradation were developed, one in liquid medium and the other in semi-solid medium. Both assays allow the contemporary screening of a large number of samples. The liquid medium assay utilizes 96-well microtiter plates and was optimized for using a minimum of patulin. The semisolid medium assay has the added advantage of slowing down the biodegradation, which allows the study and isolation of transient degradation products. The two assays are complementary and have several areas of utilization, from screening a bank of microorganisms for biodegradation ability to the study of biodegradation pathways

    Positive words carry less information than negative words

    Get PDF
    We show that the frequency of word use is not only determined by the word length \cite{Zipf1935} and the average information content \cite{Piantadosi2011}, but also by its emotional content. We have analyzed three established lexica of affective word usage in English, German, and Spanish, to verify that these lexica have a neutral, unbiased, emotional content. Taking into account the frequency of word usage, we find that words with a positive emotional content are more frequently used. This lends support to Pollyanna hypothesis \cite{Boucher1969} that there should be a positive bias in human expression. We also find that negative words contain more information than positive words, as the informativeness of a word increases uniformly with its valence decrease. Our findings support earlier conjectures about (i) the relation between word frequency and information content, and (ii) the impact of positive emotions on communication and social links.Comment: 16 pages, 3 figures, 3 table

    Evanescent light-matter Interactions in Atomic Cladding Wave Guides

    Full text link
    Alkali vapors, and in particular rubidium, are being used extensively in several important fields of research such as slow and stored light non-linear optics3 and quantum computation. Additionally, the technology of alkali vapors plays a major role in realizing myriad industrial applications including for example atomic clocks magentometers8 and optical frequency stabilization. Lately, there is a growing effort towards miniaturizing traditional centimeter-size alkali vapor cells. Owing to the significant reduction in device dimensions, light matter interactions are greatly enhanced, enabling new functionalities due to the low power threshold needed for non-linear interactions. Here, taking advantage of the mature Complimentary Metal-Oxide-Semiconductor (CMOS) compatible platform of silicon photonics, we construct an efficient and flexible platform for tailored light vapor interactions on a chip. Specifically, we demonstrate light matter interactions in an atomic cladding wave guide (ACWG), consisting of CMOS compatible silicon nitride nano wave-guide core with a Rubidium (Rb) vapor cladding. We observe the highly efficient interaction of the electromagnetic guided mode with the thermal Rb cladding. The nature of such interactions is explained by a model which predicts the transmission spectrum of the system taking into account Doppler and transit time broadening. We show, that due to the high confinement of the optical mode (with a mode area of 0.3{\lambda}2), the Rb absorption saturates at powers in the nW regime.Comment: 10 Pages 4 Figures. 1 Supplementar
    corecore