7,093 research outputs found
Beyond crystallography: diffractive imaging using coherent x-ray light sources
X-ray crystallography has been central to the development of many fields of science over the past century. It has now matured to a point that as long as good-quality crystals are available, their atomic structure can be routinely determined in three dimensions. However, many samples in physics, chemistry, materials science, nanoscience, geology, and biology are noncrystalline, and thus their three-dimensional structures are not accessible by traditional x-ray crystallography. Overcoming this hurdle has required the development of new coherent imaging methods to harness new coherent x-ray light sources. Here we review the revolutionary advances that are transforming x-ray sources and imaging in the 21st century
Hepatocellular carcinoma: Review of disease and tumor biomarkers.
© The Author(s) 2016.Hepatocellular carcinoma (HCC) is a common malignancy and now the second commonest global cause of cancer death. HCC tumorigenesis is relatively silent and patients experience late symptomatic presentation. As the option for curative treatments is limited to early stage cancers, diagnosis in non-symptomatic individuals is crucial. International guidelines advise regular surveillance of high-risk populations but the current tools lack sufficient sensitivity for early stage tumors on the background of a cirrhotic nodular liver. A number of novel biomarkers have now been suggested in the literature, which may reinforce the current surveillance methods. In addition, recent metabonomic and proteomic discoveries have established specific metabolite expressions in HCC, according to Warburgs phenomenon of altered energy metabolism. With clinical validation, a simple and non-invasive test from the serum or urine may be performed to diagnose HCC, particularly benefiting low resource regions where the burden of HCC is highest
Ebola virus disease epidemic in West Africa: Lessons learned and issues arising from West African countries
© Royal College of Physicians 2015. All rights reserved.The current Ebola virus disease (EVD) outbreak ravaging three nations in West Africa has affected more than 14,000 persons and killed over 5,000. It is the longest and most widely spread Ebola epidemic ever seen. At the time of this overview (written November 2014), having affected eight different nations, Nigeria and Senegal were able to control and eliminate the virus within a record time. Ghana has successfully, to date, kept the virus away from the country, despite economic and social relationships with affected nations. What lessons can we learn from Nigeria, Senegal and Ghana in the current epidemic? How can the world improve the health systems in low- and middle-income countries to effectively manage future outbreaks? Recently, the Royal College of Physicians launched a new partnership with the West African College of Physicians to curtail the effects of HIV/AIDS, malaria and tuberculosis in the region. We believe that strengthened health systems, skilled human resources for health and national ownership of problems are key to effective management of outbreaks such as EVD
Sustainable Health Development Goals (SHDG): breaking down the walls.
The worlds governments failed to achieve the Health for All 2000 goals from the Alma Ata Declaration of 1978. Although a lot of milestones have been covered since 2000, the worlds governing authorities are unlikely to achieve the current Millennium Development Goals (MDGs) which expire by the end of this year. The inability to achieve these goals may be linked to the multiplicity of health-related directives and fragmentation of health systems in many countries. However, with the proposed 17 sustainability development goals, health has only one universal aim: to ensure healthy lives and promote wellbeing for all at all ages. Accomplishing this will require a focus on health systems (system-thinking), commonization of services and full integration of services with total dismantling of vertical programs across the world
Challenges of liver cancer: Future emerging tools in imaging and urinary biomarkers.
© The Author(s) 2015. Published by Baishideng Publishing Group Inc. All rights reserved.Chronic liver disease has become a global health problem as a result of the increasing incidence of viral hepatitis, obesity and alcohol misuse. Over the past three decades, in the United Kingdom alone, deaths from chronic liver disease have increased both in men and in women. Currently, 2.5% of deaths worldwide are attributed to liver disease and projected figures suggest a doubling in hospitalisation and associated mortality by 2020. Chronic liver diseases vary for clinical manifestations and natural history, with some individuals having relatively indolent disease and others with a rapidly progressive course. About 30% of patients affected by hepatitis C has a progressive disease and develop cirrhosis over a 20 years period from the infection, usually 5-10 years after initial medical presentation. The aim of the current therapeutic strategies is preventing the progression from hepatitis to fibrosis and subsequently, cirrhosis. Hepatic steatosis is a risk factor for chronic liver disease and is affecting about the half of patients who abuse alcohol. Moreover non-alcoholic fatty liver disease is part of the metabolic syndrome, associated with obesity, hypertension, type ? diabetes mellitus and dyslipidaemia, and a subgroup of patients develops non-alcoholic steatohepatitis and fibrosis with subsequent cirrhosis. The strengths and pitfalls of liver biopsy are discussed and a variety of new techniques to assess liver damage from transient elastography to experimental techniques, such as in vitro urinary nuclear magnetic resonance spectroscopy. Some of the techniques and tests described are already suitable for more widespread clinical application, as is the case with ultrasound-based liver diagnostics, but others, such as urinary metabonomics, requires a period of critical evaluation or development to take them from the research arena to clinical practice
A Microscopic View on the Mott transition in Chromium-doped V2O3
V2O3 is the prototype system for the Mott transition, one of the most
fundamental phenomena of electronic correlation. Temperature, doping or
pressure induce a metal to insulator transition (MIT) between a paramagnetic
metal (PM) and a paramagnetic insulator (PI). This or related MITs have a high
technological potential, among others for intelligent windows and field effect
transistors. However the spatial scale on which such transitions develop is not
known in spite of their importance for research and applications. Here we
unveil for the first time the MIT in Cr-doped V2O3 with submicron lateral
resolution: with decreasing temperature, microscopic domains become metallic
and coexist with an insulating background. This explains why the associated PM
phase is actually a poor metal. The phase separation can be associated with a
thermodynamic instability near the transition. This instability is reduced by
pressure which drives a genuine Mott transition to an eventually homogeneous
metallic state.Comment: Paper plus supplementary materia
A new hammer to crack an old nut : interspecific competitive resource capture by plants is regulated by nutrient supply, not climate
Peer reviewedPublisher PD
Two rapid assays for screening of patulin biodegradation
Artículo sobre distintos ensayos para comprobar la biodegradación de la patulinaThe mycotoxin patulin is produced by the blue
mould pathogen Penicillium expansum in rotting apples
during postharvest storage. Patulin is toxic to a wide range
of organisms, including humans, animals, fungi and bacteria.
Wash water from apple packing and processing
houses often harbours patulin and fungal spores, which can
contaminate the environment. Ubiquitous epiphytic yeasts,
such as Rhodosporidium kratochvilovae strain LS11 which
is a biocontrol agent of P. expansum in apples, have the
capacity to resist the toxicity of patulin and to biodegrade
it. Two non-toxic products are formed. One is desoxypatulinic
acid. The aim of the work was to develop rapid,
high-throughput bioassays for monitoring patulin degradation
in multiple samples. Escherichia coli was highly
sensitive to patulin, but insensitive to desoxypatulinic acid.
This was utilized to develop a detection test for patulin,
replacing time-consuming thin layer chromatography or
high-performance liquid chromatography. Two assays for patulin degradation were developed, one in liquid medium
and the other in semi-solid medium. Both assays allow the
contemporary screening of a large number of samples. The
liquid medium assay utilizes 96-well microtiter plates and
was optimized for using a minimum of patulin. The semisolid
medium assay has the added advantage of slowing
down the biodegradation, which allows the study and isolation
of transient degradation products. The two assays are
complementary and have several areas of utilization, from
screening a bank of microorganisms for biodegradation
ability to the study of biodegradation pathways
Positive words carry less information than negative words
We show that the frequency of word use is not only determined by the word
length \cite{Zipf1935} and the average information content
\cite{Piantadosi2011}, but also by its emotional content. We have analyzed
three established lexica of affective word usage in English, German, and
Spanish, to verify that these lexica have a neutral, unbiased, emotional
content. Taking into account the frequency of word usage, we find that words
with a positive emotional content are more frequently used. This lends support
to Pollyanna hypothesis \cite{Boucher1969} that there should be a positive bias
in human expression. We also find that negative words contain more information
than positive words, as the informativeness of a word increases uniformly with
its valence decrease. Our findings support earlier conjectures about (i) the
relation between word frequency and information content, and (ii) the impact of
positive emotions on communication and social links.Comment: 16 pages, 3 figures, 3 table
Evanescent light-matter Interactions in Atomic Cladding Wave Guides
Alkali vapors, and in particular rubidium, are being used extensively in
several important fields of research such as slow and stored light non-linear
optics3 and quantum computation. Additionally, the technology of alkali vapors
plays a major role in realizing myriad industrial applications including for
example atomic clocks magentometers8 and optical frequency stabilization.
Lately, there is a growing effort towards miniaturizing traditional
centimeter-size alkali vapor cells. Owing to the significant reduction in
device dimensions, light matter interactions are greatly enhanced, enabling new
functionalities due to the low power threshold needed for non-linear
interactions. Here, taking advantage of the mature Complimentary
Metal-Oxide-Semiconductor (CMOS) compatible platform of silicon photonics, we
construct an efficient and flexible platform for tailored light vapor
interactions on a chip. Specifically, we demonstrate light matter interactions
in an atomic cladding wave guide (ACWG), consisting of CMOS compatible silicon
nitride nano wave-guide core with a Rubidium (Rb) vapor cladding. We observe
the highly efficient interaction of the electromagnetic guided mode with the
thermal Rb cladding. The nature of such interactions is explained by a model
which predicts the transmission spectrum of the system taking into account
Doppler and transit time broadening. We show, that due to the high confinement
of the optical mode (with a mode area of 0.3{\lambda}2), the Rb absorption
saturates at powers in the nW regime.Comment: 10 Pages 4 Figures. 1 Supplementar
- …
