50 research outputs found
Assessment of genome integrity with array CGH in cattle transgenic cell lines produced by homologous recombination and somatic cell cloning
<p>Abstract</p> <p>Background</p> <p>Transgenic cattle carrying multiple genomic modifications have been produced by serial rounds of somatic cell chromatin transfer (cloning) of sequentially genetically targeted somatic cells. However, cloning efficiency tends to decline with the increase of rounds of cloning. It is possible that multiple rounds of cloning compromise the genome integrity or/and introduce epigenetic errors in the resulting cell lines, rendering a decline in cloning. To test these possibilities, we performed 9 high density array Comparative Genomic Hybridization (CGH) experiments to test the genome integrity in 3 independent bovine transgenic cell lineages generated from genetic modification and cloning. Our plan included the control hybridizations (self to self) of the 3 founder cell lines and 6 comparative hybridizations between these founders and their derived cell lines with either high or low cloning efficiencies.</p> <p>Results</p> <p>We detected similar amounts of differences between the control hybridizations (8, 13 and 39 differences) and the comparative analyses of both "high" and "low" cell lines (ranging from 7 to 57 with a mean of ~20). Almost 75% of the large differences (>10 kb) and about 45% of all differences shared the same type (loss or gain) and were located in nearby genomic regions across hybridizations. Therefore, it is likely that they were not true differences but caused by systematic factors associated with local genomic features (e.g. GC contents).</p> <p>Conclusions</p> <p>Our findings reveal that large copy number variations are less likely to arise during genetic targeting and serial rounds of cloning, fortifying the notion that epigenetic errors introduced from serial cloning may be responsible for the cloning efficiency decline.</p
Transcriptional reprogramming of gene expression in bovine somatic cell chromatin transfer embryos
<p>Abstract</p> <p>Background</p> <p>Successful reprogramming of a somatic genome to produce a healthy clone by somatic cells nuclear transfer (SCNT) is a rare event and the mechanisms involved in this process are poorly defined. When serial or successive rounds of cloning are performed, blastocyst and full term development rates decline even further with the increasing rounds of cloning. Identifying the "cumulative errors" could reveal the epigenetic reprogramming blocks in animal cloning.</p> <p>Results</p> <p>Bovine clones from up to four generations of successive cloning were produced by chromatin transfer (CT). Using Affymetrix bovine microarrays we determined that the transcriptomes of blastocysts derived from the first and the fourth rounds of cloning (CT1 and CT4 respectively) have undergone an extensive reprogramming and were more similar to blastocysts derived from <it>in vitro </it>fertilization (IVF) than to the donor cells used for the first and the fourth rounds of chromatin transfer (DC1 and DC4 respectively). However a set of transcripts in the cloned embryos showed a misregulated pattern when compared to IVF embryos. Among the genes consistently upregulated in both CT groups compared to the IVF embryos were genes involved in regulation of cytoskeleton and cell shape. Among the genes consistently upregulated in IVF embryos compared to both CT groups were genes involved in chromatin remodelling and stress coping.</p> <p>Conclusion</p> <p>The present study provides a data set that could contribute in our understanding of epigenetic errors in somatic cell chromatin transfer. Identifying "cumulative errors" after serial cloning could reveal some of the epigenetic reprogramming blocks shedding light on the reprogramming process, important for both basic and applied research.</p
Development of a bovine X chromosome linkage group and painting probes to assess cattle, sheep, and goat X chromosome segment homologies
The X chromosome linkage group is conserved in placental mammals. However, X chromosome morphological differences, due to internal chromosome rearrangements, exist among mammalian species. We have developed bovine chromosome painting probes for Xp and Xq to assess segment homologies between the submetacentric bovine X chromosome and the acrocentric sheep and goat X chromosomes. These painting probes and their corresponding DNA libraries were developed by chromosome micromanipulation, DNA micropurification, microcloning, and PCR amplification. The bovine Xp painting probe identified an interstitially located homologous segment in the sheep and goat Xq region, most probably resulting from chromosome inversion. Ten type II (microsatellite) markers obtained from the bovine Xq library and five other X chromosome assigned, but unlinked, markers were used to generate a linkage map for Xq spanning 89.4 centimorgans. The chromosome painting probes and molecular markers generated in this study would be useful for comparative mapping and tracing of internal X chromosome rearrangements in all ruminant species and would contribute to the understanding of mammalian sex chromosome evolution
