22 research outputs found

    OGLE-2005-BLG-071Lb, the Most Massive M-Dwarf Planetary Companion?

    Get PDF
    We combine all available information to constrain the nature of OGLE-2005-BLG-071Lb, the second planet discovered by microlensing and the first in a high-magnification event. These include photometric and astrometric measurements from Hubble Space Telescope, as well as constraints from higher order effects extracted from the ground-based light curve, such as microlens parallax, planetary orbital motion and finite-source effects. Our primary analysis leads to the conclusion that the host of Jovian planet OGLE-2005-BLG-071Lb is an M dwarf in the foreground disk with mass M= 0.46 +/- 0.04 Msun, distance D_l = 3.3 +/- 0.4 kpc, and thick-disk kinematics v_LSR ~ 103 km/s. From the best-fit model, the planet has mass M_p = 3.8 +/- 0.4 M_Jup, lies at a projected separation r_perp = 3.6 +/- 0.2 AU from its host and so has an equilibrium temperature of T ~ 55 K, i.e., similar to Neptune. A degenerate model less favored by \Delta\chi^2 = 2.1 (or 2.2, depending on the sign of the impact parameter) gives similar planetary mass M_p = 3.4 +/- 0.4 M_Jup with a smaller projected separation, r_\perp = 2.1 +/- 0.1 AU, and higher equilibrium temperature T ~ 71 K. These results from the primary analysis suggest that OGLE-2005-BLG-071Lb is likely to be the most massive planet yet discovered that is hosted by an M dwarf. However, the formation of such high-mass planetary companions in the outer regions of M-dwarf planetary systems is predicted to be unlikely within the core-accretion scenario. There are a number of caveats to this primary analysis, which assumes (based on real but limited evidence) that the unlensed light coincident with the source is actually due to the lens, that is, the planetary host. However, these caveats could mostly be resolved by a single astrometric measurement a few years after the event.Comment: 51 pages, 12 figures, 3 tables, Published in Ap

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Exploring Class‐II PI3K Inhibition for the treatment of Alzheimer’s Disease: Virtual Screening for PI3KC2A Inhibitors

    No full text
    Background: Focusing on novel AD treatments, the TREAT‐AD centers offer an array of free research tools, shared via the AD Knowledge Portal in a Target Enablement Package (TEP). This abstract showcases the research conducted by the IUSM‐Purdue TREAT‐AD Center, specifically focusing on Targeting class‐II PI3K’s as a potential breakthrough in AD therapy. Endocytosis within the brain encompasses diverse pathways for internalizing extracellular cargoes and receptors into cells. The prominent routes include clathrin‐mediated endocytosis and phagocytosis. Endocytosis plays a crucial role in processing amyloid precursor protein (APP) leading to abnormal production of Aβ peptides. Recycling endosomes are vital for delivering and eventually releasing Aβ into the brain. Recent research emphasizes the pivotal role of PI3K‐C2α, a class II PI3K member, in regulated endocytosis through its clathrin‐binding domain. Its localization spans clathrin‐coated pits, endocytic vesicles, early endosomes, and the trans‐Golgi network, generating phosphatidylinositol 3‐phosphate (PtdIns(3)P) and/or phosphatidylinositol 3,4‐bisphosphates (PtdIns(3,4)P2) in vivo. Targeting clathrin‐mediated endocytosis by inhibiting PI3K‐C2α, a key regulator in clathrin coated vesicle formation, could be a potential therapeutic strategy against Alzheimer’s disease. Method: We conducted extensive virtual screenings of vast compound libraries to determine potent small molecules inhibiting PI3K‐C2α. Employing shape‐based screening, and clustering techniques, we identified leading compounds for subsequent in vitro kinase assays. Compounds exhibiting nanomolar activity were selected for further investigation. Leveraging these findings, we conducted Structure‐Activity Relationship (SAR) studies, optimizing analogs to enhance binding affinity and cellular pharmacology. Result: We have identified novel PI3K‐C2α inhibitors and are in the initial stages of optimization. These compounds exhibit promising target engagement, pending further assessment for biochemical activity and cellular pharmacology. In silico assessments suggest their structures are ideal for CNS drug discovery plans. Conclusion: Inhibiting PI3K‐C2α stands as a promising therapeutic approach for Alzheimer’s disease. We've discovered unique molecular structures that inhibit the enzyme. Our findings suggest potential probe molecules for validating the target and developing lead compounds for clinical investigations

    Inhibition of Lyn kinase: A novel approach to treatment of Alzheimer’s disease

    No full text
    Background: The TREAT‐AD centers aim to improve Alzheimer’s Disease (AD) research by offering free, high‐quality tools and technologies. Lyn is a tyrosine kinase that belongs to the Src family kinases. The expression of Lyn and its activity have been implicated in AD. This class of proteins is involved in TREM2 mediated microglial activation and phagocytosis, a process which is beneficial for clearing neurotoxins such as Aβ oligomers in the brain. Lyn inhibition may activate microglia. Given the relationship between accumulation of Aβ and its exacerbation of neurodegenerative diseases such as AD, selective inhibition of Lyn has been proposed as a novel therapeutic approach to treating early‐onset AD. However, potent, selective, and brain penetrant Lyn inhibitors are unavailable to test this hypothesis. Method: We screened a variety of known kinase inhibitors to determine their activity towards inhibition of Lyn using the biochemical HotSpot kinase assay. With this data in hand, we identified imatinib as a starting point for the design of novel Lyn inhibitors. Structure‐based design and computational docking models were used to propose more active and selective Lyn inhibitors, which were synthesized. The activities were determined, and multiple parameter optimization (MPO) informed iterative Structure Activity Relationship (SAR) studies. The best compounds were evaluated in assays of microglia activation, and their drug metabolism and pharmacokinetic (DMPK) properties were determined. Result: A series of novel type II inhibitors are now available for testing. The results demonstrate a unique tail group provides the novel scaffold with potent activity and selectivity towards inhibition of Lyn, exceeding that of imatinib. Conclusion: Computational models, SAR, and MPO provided potent and selective Lyn inhibitors with good DMPK properties. Further studies are under way to determine the impact of these compounds on TREM2 mediated activation of microglia both in vitro and in vivo

    Identification of Chemical Tool Compounds to Investigate the Role of Lyn Kinase in TREM2‐Mediated Microglia Activation and Phagocytosis

    No full text
    Background: Lyn kinase, a member of the Src family of tyrosine kinases, predominantly phosphorylates ITIM and ITAM motifs linked to immune receptors and adaptor proteins, and is emerging as a target for Alzheimer’s disease (AD). The role of Lyn in TREM2‐mediated microglial activation and phagocytosis, a critical pathway for clearing Aβ plaques, remains unclear and potent, selective, and brain penetrant Lyn inhibitors are unavailable. In this study, we report the characterization of Lyn kinase inhibitors from the literature as well as the establishment of an advanced virtual screening platform at the IUSM‐Purdue‐TREAT‐AD center to identify new type II Lyn inhibitors suitable as molecular probes. Method: We first performed a thorough literature survey and found 14 reported Lyn kinase inhibitors. We then validated their Lyn inhibitor activities and Lyn selectivities using the HotSpot kinase assay. We tested these compounds for microglia activation in a high‐content imaging assay using HMC3 (human) and BV2 (mouse) microglia‐like cell lines. We also performed kinome profiling in these cells to evaluate cellular target engagement and selectivity. Finally, we screened a million‐compounds using a computational pipeline that combined molecular docking, shape‐based screening, and MD simulations to identify novel and potent type II Lyn kinase inhibitors. Result: Our findings revealed that Type I inhibitors, particularly Saracatinib and Bosutinib, potently inhibit Lyn within the picomolar (pM) range. On the other hand, Type II inhibitors, such as Masitinib and Imatinib, displayed pronounced >20‐fold selectivity for Lyn over Hck with low nM Lyn inhibitor activities. Saracatinib and Bosutinib significantly induced phagocytosis in HMC3 cells, whereas Type II inhibitors demonstrated moderate activity in both HMC3 and BV2 cells. Our virtual screening platform identified a new type II Lyn inhibitor with picomolar activity and good Lyn/Hck selectivity. Conclusion: We have successfully evaluated previously reported inhibitors and introduced a novel type II Lyn kinase inhibitor with picomolar (pM) activities suitable for use as chemical probes to investigate the role of Lyn in TREM2‐mediated microglial activation

    Giving superabsorbent polymers a second life as pressure-sensitive adhesives

    No full text
    AbstractAn estimated 6.3 billion metric tons of post-consumer polymer waste has been produced, with the majority (79%) in landfills or the environment. Recycling methods that utilize these waste polymers could attenuate their environmental impact. For many polymers, recycling via mechanical processes is not feasible and these materials are destined for landfills or incineration. One salient example is the superabsorbent material used in diapers and feminine hygiene products, which contain crosslinked sodium polyacrylates. Here we report an open-loop recycling method for these materials that involves (i) decrosslinking via hydrolysis, (ii) an optional chain-shortening via sonication, and (iii) functionalizing via Fischer esterification. The resulting materials exhibit low-to-medium storage and loss moduli, and as such, are applicable as general-purpose adhesives. A life cycle assessment demonstrates that the adhesives synthesized via this approach outcompete the same materials derived from petroleum feedstocks on nearly every metric, including carbon dioxide emissions and cumulative energy demand.</jats:p
    corecore