120 research outputs found

    3D Localization of Objects Buried within Granular Materials Using a Distributed 3-Axis Tactile Sensor

    Get PDF
    While visual sensing is often the predominant modality for a robot to localize objects in the environment, tactile and force sensing become crucial when objects are occluded, poorly visible, or buried. However, existing works on locating buried objects rely solely on force measurements at a single contact point on the robot end-effector, making 3D localization very challenging. This paper presents an alternative approach using a tactile sensor that measures both normal and shear forces (i.e. 3-axis) on distributed points; three Long Short-Term Memory (LSTM) models are trained with real-world data to perform real-time 3D localization (i.e. distance, direction and depth) of an object buried within a granular material. Our experimental results suggest that measuring both normal and shear forces (instead of just normal) on distributed contact points (instead of only one point) is essential for the accurate 3D localization of buried objects

    A two-fingered robot gripper with variable stiffness flexure hinges based on shape morphing

    Get PDF
    This paper presents a novel approach for developing robotic grippers with variable stiffness hinges for dexterous grasps. This approach for the first time uses pneumatically actuated pouch actuators to fold and unfold morphable flaps of flexure hinges thus change stiffness of the hinge. By varying the air pressure in pouch actuators, the flexure hinge morphs into a beam with various open sections while the flaps bend, enabling stiffness variation of the flexure hinge. This design allows 3D printing of the flexure hinge using printable soft filaments. Utilizing the variable stiffness flexure hinges as the joints of robotic fingers, a light-weight and low-cost two-fingered tendon driven robotic gripper is developed. The stiffness variation caused due to the shape morphing of flexure hinges is studied by conducting static tests on fabricated hinges with different flap angles and on a flexure hinge with flaps that are bent by pouch actuators subjected to various pressures. Multiple grasp modes of the two-fingered gripper are demonstrated by grasping objects with various geometric shapes. The gripper is then integrated with a robot manipulator in a teleoperation setup for conducting a pick-and-place operation in a confined environment

    Reconfiguration Algorithms for Cubic Modular Robots with Realistic Movement Constraints

    Full text link
    We introduce and analyze a model for self-reconfigurable robots made up of unit-cube modules. Compared to past models, our model aims to newly capture two important practical aspects of real-world robots. First, modules often do not occupy an exact unit cube, but rather have features like bumps extending outside the allotted space so that modules can interlock. Thus, for example, our model forbids modules from squeezing in between two other modules that are one unit distance apart. Second, our model captures the practical scenario of many passive modules assembled by a single robot, instead of requiring all modules to be able to move on their own. We prove two universality results. First, with a supply of auxiliary modules, we show that any connected polycube structure can be constructed by a carefully aligned plane sweep. Second, without additional modules, we show how to construct any structure for which a natural notion of external feature size is at least a constant; this property largely consolidates forbidden-pattern properties used in previous works on reconfigurable modular robots

    Reconfiguration Algorithms for Cubic Modular Robots with Realistic Movement Constraints

    Get PDF
    We introduce and analyze a model for self-reconfigurable robots made up of unit-cube modules. Compared to past models, our model aims to newly capture two important practical aspects of real-world robots. First, modules often do not occupy an exact unit cube, but rather have features like bumps extending outside the allotted space so that modules can interlock. Thus, for example, our model forbids modules from squeezing in between two other modules that are one unit distance apart. Second, our model captures the practical scenario of many passive modules assembled by a single robot, instead of requiring all modules to be able to move on their own. We prove two universality results. First, with a supply of auxiliary modules, we show that any connected polycube structure can be constructed by a carefully aligned plane sweep. Second, without additional modules, we show how to construct any structure for which a natural notion of external feature size is at least a constant; this property largely consolidates forbidden-pattern properties used in previous works on reconfigurable modular robots

    Robot-Assisted Nuclear Disaster Response: Report and Insights from a Field Exercise

    Get PDF
    This paper reports on insights by robotics researchers that participated in a 5-day robot-assisted nuclear disaster response field exercise conducted by Kerntechnische Hilfdienst GmbH (KHG) in Karlsruhe, Germany. The German nuclear industry established KHG to provide a robot-assisted emergency response capability for nuclear accidents. We present a systematic description of the equipment used; the robot operators' training program; the field exercise and robot tasks; and the protocols followed during the exercise. Additionally, we provide insights and suggestions for advancing disaster response robotics based on these observations. Specifically, the main degradation in performance comes from the cognitive and attentional demands on the operator. Furthermore, robotic platforms and modules should aim to be robust and reliable in addition to their ease of use. Last, as emergency response stakeholders are often skeptical about using autonomous systems, we suggest adopting a variable autonomy paradigm to integrate autonomous robotic capabilities with the human-in-the-loop gradually. This middle ground between teleoperation and autonomy can increase end-user acceptance while directly alleviating some of the operator's robot control burden and maintaining the resilience of the human-in-the-loop

    Tracking a moving sound source from a multi-rotor drone

    Get PDF
    We propose a method to track from a multirotor drone a moving source, such as a human speaker or an emergency whistle, whose sound is mixed with the strong ego-noise generated by rotating motors and propellers. The proposed method is independent of the specific drone and does not need pre-training nor reference signals. We first employ a time-frequency spatial filter to estimate, on short audio segments, the direction of arrival of the moving source and then we track these noisy estimations with a particle filter. We quantitatively evaluate the results using a ground-truth trajectory of the sound source obtained with an on-board camera and compare the performance of the proposed method with baseline solutions

    Novel infinitely Variable Transmission allowing efficient transmission ratio variations at rest

    Get PDF
    Recent studies showed that Continuously Variable Transmissions (CVT) and Infinitely Variable Transmissions (IVT) can considerably improve the locomotion efficiency in legged robot. A CVT is a transmission whose ratio can be continuously varied and an IVT is a transmission whose ratio can be continuously varied from positive to negative values. However, efficient use of such transmissions in walking applications requires changing the transmission ratio at a minimal energy cost, even at rest, i.e. when the input shaft is not rotating. This contribution proposes a novel CVT and IVT principle which can achieve such ratio variations at rest. The presented CVT is a modified planetary gear, whose planets are conical and mounted on inclined shafts, and whose ring is made of contiguous diabolo-shaped rollers. This configuration enables the control of the transmission ratio by adjusting the point of contact between the cones and rollers that comprise the ring. A traditional planetary gear system can be added to the CVT to form an IVT

    Magnetic-field-inspired Navigation for Soft Continuum Manipulator

    Get PDF
    Taking inspiration from the properties of magnetic fields, we propose a reactive navigation method for soft continuum manipulators operating in unknown environments. The proposed navigation method outperforms previous works since it is able to successfully achieve collision-free movements towards the goal in environments with convex obstacles without relying on a priori information of the obstacles' shapes and locations. Simulations for the kinematic model of a soft continuum manipulator and preliminary experiments with a 2-segments soft continuum arm are performed, showing promising results and the potential for our approach to be applied widely
    corecore