3,016 research outputs found
Towards optimization of pulsed sodium laser guide stars
Pulsed sodium laser guide stars (LGS) are useful because they allow for
Rayleigh blanking and fratricide avoidance in multiple-LGS systems.
Bloch-equation simulations of sodium-light interactions show that these may be
able to achieve photon returns nearly equal to, and in some cases greater than,
what is seen from continuous-wave (CW) excitation. In this work, we study the
time-dependent characteristics of sodium fluorescence, and investigate the
optimal format for the new fiber laser LGS that will be part of the upgraded
adaptive optics (AO) system on the Shane telescope at Mt. Hamilton. Results of
this analysis are examined in the context of their general applicability to
other LGS systems and the potential benefits of uplink correction are
considered. Comparisons of simulation predictions with measurements from
existing LGS are also presented and discussed.Comment: 9 pages, 7 figures, accepted by JOSA
Variable Free Spectral Range Spherical Mirror Fabry-Perot Interferometer
A spherical Fabry-Perot interferometer with adjustable mirror spacing is used
to produce interference fringes with frequency separation (c/2L)/N, N=2-15. The
conditions for observation of these fringes are derived from the consideration
of the eigenmodes of the cavity with high transverse indices.Comment: 11 pages, 7 figures, accepted to Siberian Journal of Physic
Can a quantum nondemolition measurement improve the sensitivity of an atomic magnetometer?
Noise properties of an idealized atomic magnetometer that utilizes spin
squeezing induced by a continuous quantum nondemolition measurement are
considered. Such a magnetometer measures spin precession of atomic spins by
detecting optical rotation of far-detuned light. Fundamental noise sources
include the quantum projection noise and the photon shot-noise. For measurement
times much shorter than the spin-relaxation time observed in the absence of
light () divided by , the optimal sensitivity of the
magnetometer scales as , so an advantage over the usual sensitivity
scaling as can be achieved. However, at longer measurement times,
the optimized sensitivity scales as , as for a usual shot-noise
limited magnetometer. If strongly squeezed probe light is used, the Heisenberg
uncertainty limit may, in principle, be reached for very short measurement
times. However, if the measurement time exceeds , the
scaling is again restored.Comment: Some details of calculations can be found in a companion note:
physics/040712
Nonlinear magneto-optical rotation in optically thick media
Nonlinear magneto-optical rotation is a sensitive technique for measuring
magnetic fields. Here, the shot-noise-limited magnetometric sensitivity is
analyzed for the case of optically-thick media and high light power, which has
been the subject of recent experimental and theoretical investigations.Comment: 7 pages, 4 figure
Cancellation of nonlinear Zeeman shifts with light shifts
Nonlinear Zeeman (NLZ) shifts arising from magnetic-field mixing of the two
hyperfine ground-states in alkali atoms lead to splitting of magnetic-resonance
lines. This is a major source of sensitivity degradation and the so-called
"heading errors" of alkali-vapor atomic magnetometers operating in the
geophysical field range (B approx. 0.2-0.7 G). Here, it is shown theoretically
and experimentally that NLZ shifts can be effectively canceled by light shifts
caused by a laser field of appropriate intensity, polarization and frequency, a
technique that can be readily applied in practical situations.Comment: 5 pages, 5 figures, to be published in PR
Artificial Intelligence
Contains reports on four research projects.M.I.T. Research Laboratory of ElectronicsM.I.T. Computation Cente
Detection of radio frequency magnetic fields using nonlinear magneto-optical rotation
We describe a room-temperature alkali-metal atomic magnetometer for detection
of small, high frequency magnetic fields. The magnetometer operates by
detecting optical rotation due to the precession of an aligned ground state in
the presence of a small oscillating magnetic field. The resonance frequency of
the magnetometer can be adjusted to any desired value by tuning the bias
magnetic field. We demonstrate a sensitivity of in a 3.5 cm diameter, paraffin coated cell. Based
on detection at the photon shot-noise limit, we project a sensitivity of
.Comment: 6 pages, 6 figure
- …
