483 research outputs found

    Jointless gene of tomato

    Get PDF
    The present invention relates to the isolation and identification of a JOINTLESS gene from a tomato plant (genus Lycopersicon). More specifically, the invention relates to novel nucleic acid molecules isolated from a tomato plant, proteins encoded by such nucleic acid molecules, and antibodies raised against such proteins. The present invention is also directed to a nucleic acid homolog of a JOINTLESS gene and a method to identify a homolog in plants other than tomato

    The Rice Paradox: Multiple Origins but Single Domestication in Asian Rice

    Get PDF
    The origin of domesticated Asian rice (Oryza sativa) has been a contentious topic, with conflicting evidence for either single or multiple domestication of this key crop species. We examined the evolutionary history of domesticated rice by analyzing de novo assembled genomes from domesticated rice and its wild progenitors. Our results indicate multiple origins, where each domesticated rice subpopulation (japonica, indica, and aus) arose separately from progenitor O. rufipogon and/or O. nivara. Coalescence-based modeling of demographic parameters estimate that the first domesticated rice population to split off from O. rufipogon was O. sativa ssp. japonica, occurring at ∼13.1–24.1 ka, which is an order of magnitude older then the earliest archeological date of domestication. This date is consistent, however, with the expansion of O. rufipogon populations after the Last Glacial Maximum ∼18 ka and archeological evidence for early wild rice management in China. We also show that there is significant gene flow from japonica to both indica (∼17%) and aus (∼15%), which led to the transfer of domestication alleles from early-domesticated japonica to proto-indica and proto-aus populations. Our results provide support for a model in which different rice subspecies had separate origins, but that de novo domestication occurred only once, in O. sativa ssp. japonica, and introgressive hybridization from early japonica to proto-indica and proto-aus led to domesticated indica and aus rice

    Construction, Characterization, and Preliminary BAC-End Sequence Analysis of a Bacterial Artificial Chromosome Library of the Tea Plant (Camellia sinensis)

    Get PDF
    We describe the construction and characterization of a publicly available BAC library for the tea plant, Camellia sinensis. Using modified methods, the library was constructed with the aim of developing public molecular resources to advance tea plant genomics research. The library consists of a total of 401,280 clones with an average insert size of 135 kb, providing an approximate coverage of 13.5 haploid genome equivalents. No empty vector clones were observed in a random sampling of 576 BAC clones. Further analysis of 182 BAC-end sequences from randomly selected clones revealed a GC content of 40.35% and low chloroplast and mitochondrial contamination. Repetitive sequence analyses indicated that LTR retrotransposons were the most predominant sequence class (86.93%–87.24%), followed by DNA retrotransposons (11.16%–11.69%). Additionally, we found 25 simple sequence repeats (SSRs) that could potentially be used as genetic markers

    The Oryza BAC resource: A genus-wide and genome scale tool for exploring rice genome evolution and leveraging useful genetic diversity from wild relatives

    Get PDF
    Rice was the first crop to have a high-quality reference genome sequence and is now at the forefront of intense functional and evolutionary research for two reasons-its central role in world food security, and its status as a model system for grasses. A thorough characterization of the rice genome cannot be accomplished without a deep understanding of its evolutionary history. The genus Oryza contains two cultivated and 22 wild rice species that represent 10 distinct genome types embedded within a robust phylogeny spanning a ~15 million year time span. The genus contains an untapped reservoir of agriculturally important traits and a historical record of genomic changes (especially those related to domestication, polyploidy, speciation and adaption).The two main objectives of the 'Oryza Map Alignment Project' (OMAP) were to functionally characterize the rice genome from a comparative standpoint and to provide essential tools to leverage the novel genetic diversity from wild relatives for rice improvement. The objective of this review is to summarize our efforts towards developing the most comprehensive genus-wide set of publicly available BAC resources for the genus Oryza, the first of its kind among plants (and perhaps higher eukaryotes), and their applications

    Ortholog Alleles at Xa3/Xa26 Locus Confer Conserved Race-Specific Resistance against Xanthomonas oryzae in Rice

    Get PDF
    The rice disease resistance (R) gene Xa3/Xa26 (having also been named Xa3 and Xa26) against Xanthomonas oryzae pv. oryzae (Xoo), which causes bacterial blight disease, belongs to a multiple gene family clustered in chromosome 11 and is from an AA genome rice cultivar (Oryza sativa L.). This family encodes leucine-rich repeat (LRR) receptor kinase-type proteins. Here, we show that the orthologs (alleles) of Xa3/Xa26, Xa3/Xa26-2, and Xa3/Xa26-3, from wild Oryza species O. officinalis (CC genome) and O. minuta (BBCC genome), respectively, were also R genes against Xoo. Xa3/Xa26-2 and Xa3/Xa26-3 conferred resistance to 16 of the 18 Xoo strains examined. Comparative sequence analysis of the Xa3/Xa26 families in the two wild Oryza species showed that Xa3/Xa26-3 appeared to have originated from the CC genome of O. minuta. The predicted proteins encoded by Xa3/Xa26, Xa3/Xa26-2, and Xa3/Xa26-3 share 91–99% sequence identity and 94–99% sequence similarity. Transgenic plants carrying a single copy of Xa3/Xa26, Xa3/Xa26-2, or Xa3/Xa26-3, in the same genetic background, showed a similar resistance spectrum to a set of Xoo strains, although plants carrying Xa3/Xa26-2 or Xa3/Xa26-3 showed lower resistance levels than the plants carrying Xa3/Xa26. These results suggest that the Xa3/Xa26 locus predates the speciation of A and C genome, which is approximately 7.5 million years ago. Thus, the resistance specificity of this locus has been conserved for a long time

    Transposable element distribution, abundance and role in genome size variation in the genus Oryza

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The genus <it>Oryza </it>is composed of 10 distinct genome types, 6 diploid and 4 polyploid, and includes the world's most important food crop – rice (<it>Oryza sativa </it>[AA]). Genome size variation in the <it>Oryza </it>is more than 3-fold and ranges from 357 Mbp in <it>Oryza glaberrima </it>[AA] to 1283 Mbp in the polyploid <it>Oryza ridleyi </it>[HHJJ]. Because repetitive elements are known to play a significant role in genome size variation, we constructed random sheared small insert genomic libraries from 12 representative <it>Oryza </it>species and conducted a comprehensive study of the repetitive element composition, distribution and phylogeny in this genus. Particular attention was paid to the role played by the most important classes of transposable elements (Long Terminal Repeats Retrotransposons, Long interspersed Nuclear Elements, helitrons, DNA transposable elements) in shaping these genomes and in their contributing to genome size variation.</p> <p>Results</p> <p>We identified the elements primarily responsible for the most strikingly genome size variation in <it>Oryza</it>. We demonstrated how Long Terminal Repeat retrotransposons belonging to the same families have proliferated to very different extents in various species. We also showed that the pool of Long Terminal Repeat Retrotransposons is substantially conserved and ubiquitous throughout the <it>Oryza </it>and so its origin is ancient and its existence predates the speciation events that originated the genus. Finally we described the peculiar behavior of repeats in the species <it>Oryza coarctata </it>[HHKK] whose placement in the <it>Oryza </it>genus is controversial.</p> <p>Conclusion</p> <p>Long Terminal Repeat retrotransposons are the major component of the <it>Oryza </it>genomes analyzed and, along with polyploidization, are the most important contributors to the genome size variation across the <it>Oryza </it>genus. Two families of Ty3-<it>gypsy </it>elements (<it>RIRE2 </it>and <it>Atlantys</it>) account for a significant portion of the genome size variations present in the <it>Oryza </it>genus.</p

    Curated genome annotation of Oryza sativa ssp. japonica and comparative genome analysis with Arabidopsis thaliana

    Get PDF
    We present here the annotation of the complete genome of rice Oryza sativa L. ssp. japonica cultivar Nipponbare. All functional annotations for proteins and non-protein-coding RNA (npRNA) candidates were manually curated. Functions were identified or inferred in 19,969 (70%) of the proteins, and 131 possible npRNAs (including 58 antisense transcripts) were found. Almost 5000 annotated protein-coding genes were found to be disrupted in insertional mutant lines, which will accelerate future experimental validation of the annotations. The rice loci were determined by using cDNA sequences obtained from rice and other representative cereals. Our conservative estimate based on these loci and an extrapolation suggested that the gene number of rice is ~32,000, which is smaller than previous estimates. We conducted comparative analyses between rice and Arabidopsis thaliana and found that both genomes possessed several lineage-specific genes, which might account for the observed differences between these species, while they had similar sets of predicted functional domains among the protein sequences. A system to control translational efficiency seems to be conserved across large evolutionary distances. Moreover, the evolutionary process of protein-coding genes was examined. Our results suggest that natural selection may have played a role for duplicated genes in both species, so that duplication was suppressed or favored in a manner that depended on the function of a gene
    corecore