49 research outputs found
Structure and Vibrations of the Vicinal Copper (211) Surface
We report a first principles theoretical study of the surface relaxation and
lattice dynamics of the Cu(211) surface using the plane wave pseudopotential
method. We find large atomic relaxations for the first several atomic layers
near the step edges on this surface, and a substantial step-induced
renormalization of the surface harmonic force constants. We use the results to
study the harmonic fluctuations around the equilibrium structure and find three
new step-derived features in the zone center vibrational spectrum. Comparison
of these results with previous theoretical work and weith experimental studies
using inelastic He scattering are reported.Comment: 6 Pages RevTex, 7 Figures in Postscrip
Ab initio Calculations of Multilayer Relaxations of Stepped Cu Surfaces
We present trends in the multilayer relaxations of several vicinals of
Cu(100) and Cu(111) of varying terrace widths and geometry. The electronic
structure calculations are based on density functional theory in the local
density approximation with norm-conserving, non-local pseudopotentials in the
mixed basis representation. While relaxations continue for several layers, the
major effect concentrates near the step and corner atoms. On all surfaces the
step atoms contract inwards, in agreement with experimental findings.
Additionally, the corner atoms move outwards and the atoms in the adjacent
chain undergo large inward relaxation. Correspondingly, the largest contraction
(4%) is in the bond length between the step atom and its bulk nearest neighbor
(BNN), while that between the corner atom and BNN is somewhat enlarged. The
surface atoms also display changes in registry of upto 1.5%. Our results are in
general in good agreement with LEED data including the controversial case of
Cu(511). Subtle differences are found with results obtained from semi-empirical
potentials.Comment: 21 pages and 3 figure
Structure and dynamics of Rh surfaces
Lattice relaxations, surface phonon spectra, surface energies, and work
functions are calculated for Rh(100) and Rh(110) surfaces using
density-functional theory and the full-potential linearized augmented plane
wave method. Both, the local-density approximation and the generalized gradient
approximation to the exchange-correlation functional are considered. The force
constants are obtained from the directly calculated atomic forces, and the
temperature dependence of the surface relaxation is evaluated by minimizing the
free energy of the system. The anharmonicity of the atomic vibrations is taken
into account within the quasiharmonic approximation. The importance of
contributions from different phonons to the surface relaxation is analyzed.Comment: 9 pages, 7 figures, scheduled to appear in Phys. Rev. B, Feb. 15
(1998). Other related publications can be found at
http://www.rz-berlin.mpg.de/th/paper.htm
Selbstkonsistente Pseudopotentialrechnungen fuer Metalle mit schmalen d-Baendern. Bulk- und Oberflaecheneigenschaften
Applicability of the Broken-Bond Rule to the Surface Energy of the fcc Metals
We apply the Green's function based full-potential screened
Korringa-Kohn-Rostoker method in conjunction with the local density
approximation to study the surface energies of the noble and the fcc transition
and metals. The orientation dependence of the transition metal surface
energies can be well described taking into account only the broken bonds
between first neighbors, quite analogous to the behavior we recently found for
the noble metals [see cond-mat/0105207]. The (111) and (100) surfaces of the
metals show a jellium like behavior but for the more open surfaces we find
again the noble metals behavior but with larger deviation from the broken-bond
rule compared to the transition metals. Finally we show that the use of the
full potential is crucial to obtain accurate surface energy anisotropy ratios
for the vicinal surfaces.Comment: 13 pages, 5 figures, to appear in July in Surface Science Vol. 511,1
(2002
Self-diffusion of adatoms, dimers, and vacancies on Cu(100)
We use ab initio static relaxation methods and semi-empirical
molecular-dynamics simulations to investigate the energetics and dynamics of
the diffusion of adatoms, dimers, and vacancies on Cu(100). It is found that
the dynamical energy barriers for diffusion are well approximated by the
static, 0 K barriers and that prefactors do not depend sensitively on the
species undergoing diffusion. The ab initio barriers are observed to be
significantly lower when calculated within the generalized-gradient
approximation (GGA) rather than in the local-density approximation (LDA). Our
calculations predict that surface diffusion should proceed primarily via the
diffusion of vacancies. Adatoms are found to migrate most easily via a jump
mechanism. This is the case, also, of dimers, even though the corresponding
barrier is slightly larger than it is for adatoms. We observe, further, that
dimers diffuse more readily than they can dissociate. Our results are discussed
in the context of recent submonolayer growth experiments of Cu(100).Comment: Submitted to the Physical Review B; 15 pages including postscript
figures; see also http://www.centrcn.umontreal.ca/~lewi
Chlorine adsorption on the Cu(111) surface
We investigate the adsorption of chlorine on the Cu(111) surface with full
potential all-electron density functional calculations. Chlorine adsorption at
the fcc hollow sites is slightly preferred over that at the hcp hollow. The
adsorption geometry is in excellent agreement with electron diffraction and ion
scattering data. Adsorption energies and surface diffusion barriers are close
to those deduced from experiment.Comment: to appear in Chem. Phys. Let
