3,671 research outputs found
Novel method for the isolation of adipose stem cells (ASCs)
Adipose stem cells (ASCs) represent a cell population with great potential for tissue engineering
applications. Several articles have been published showing the proliferation and differentiation
potential, the markers and the wide range of potential applications of these cells. In the majority
of these studies the ASCs are isolated using a basic enzymatic procedure, which results in a quite
heterogeneous cell population that compromises their proliferation and differentiation. This paper
reports the development and optimization of a new isolation/purification method that allows
populations of ASCs to be obtained, which significantly reduces (and eventually eliminates) the
‘contamination’ of other cell types. This method is based on the use of immunomagnetic beads
coated with specific antibodies. The first part of the study described here analysed the expression of
marker genes for stem cells and the colony-forming unit (CFU) capacity of the cells isolated, while
the second part is dedicated to the osteogenic differentiation potential of the isolated cells. The
results showed that, using the isolation method based on immunomagnetic beads, it was possible to
obtain ASCs and also underline the existence of several subpopulations of stem cells in the adipose
tissue
Magnetic and thermodynamic properties of Sr_{2}LaFe_{3}O_{9}
Using a Dirac-Heisenberg Hamiltonian with biquadratic exchange interactions,
we study the effect of iron disproportionation on the magnetic ordering, and
describe the first-order magnetic transition occurring in the perovskite
Sr_{2}LaFe_{3}O_{9}. Upon fitting the experimental data, we give an estimate of
the exchange integrals for the antiferromagntic and ferromagnetic interactions,
in agreement with previous works on kindered compounds. Spin-wave theory yields
a magnon spectrum with a gapless antiferromagnetic mode together with two
gapped ferromagnetic ones.Comment: 8 pages of RevTex, 5 figures (available upon request), submitted to
J. Mag. Mag. Ma
Landsat TM and ETM+ derived snowline altitudes in the Cordillera Huayhuash and Cordillera Raura, Peru, 1986–2005
The Cordilleras Huayhuash and Raura are remote glacierized ranges in the Andes Mountains of Peru. A robust assessment of modern glacier change is important for understanding how regional change affects Andean communities, and for placing paleo-glaciers in a context relative to modern glaciation and climate. Snowline altitudes (SLAs) derived from satellite imagery are used as a proxy for modern (1986–2005) local climate change in a key transition zone in the Andes. <br><br> Clear sky, dry season Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper (ETM+) satellite images from 1986–2005 were used to identify snowline positions, and their altitude ranges were extracted from an Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) digital elevation model (DEM). Based on satellite records from 31 glaciers, average snowline altitudes (SLAs), an approximation for the equilibrium line altitude (ELA), for the Cordillera Huayhuash (13 glaciers) and Cordillera Raura (18 glaciers) from 1986–2005 were 5051 m a.s.l. from 1986–2005 and 5006 m a.s.l. from 1986–2002, respectively. During the same time period, the Cordillera Huayhuash SLA experienced no significant change while the Cordillera Raura SLA rose significantly from 4947 m a.s.l. to 5044 m a.s.l
Inter-hemispheric linkages in climate change: Paleo-perspectives for future climate change
The Pole-Equator-Pole (PEP) projects of the PANASH (Paleoclimates of the Northern and Southern Hemisphere) programme have significantly advanced our understanding of past climate change on a global basis and helped to integrate paleo-science across regions and research disciplines. PANASH science allows us to constrain predictions for future climate change and to contribute to the management of consequent environmental changes. We identify three broad areas where PEP science makes key contributions. 1. The pattern of global changes. Knowing the exact timing of glacial advances (synchronous or otherwise) during the last glaciation is critical to understanding interhemispheric links in climate. Work in PEPI demonstrated that the tropical Andes in South America were deglaciated earlier than the Northern Hemisphere (NH) and that an extended warming began there ca. 21 000 cal years BP. The general pattern is consistent with Antarctica and has now been replicated from studies in Southern Hemisphere (SH) regions of the PEPII transect. That significant deglaciation of SH alpine systems and Antarctica led deglaciation of NH ice sheets may reflect either i) faster response times in alpine systems and Antarctica, ii) regional moisture patterns that influenced glacier mass balance, or iii) a SH temperature forcing that led changes in the NH. This highlights the limitations of current understanding and the need for further fundamental paleoclimate research. 2. Changes in modes of operation of oscillatory climate systems. Work across all the PEP transects has led to the recognition that the El Nino Southern Oscillation (ENSO) phenomenon has changed markedly through time. It now appears that ENSO operated during the last glacial termination and during the early Holocene, but that precipitation teleconnections even within the Pacific Basin were turned down, or off. In the modern ENSO phenomenon both inter-annual and seven year periodicities are present, with the inter-annual signal dominant. Paleo-data demonstrate that the relative importance of the two periodicities changes through time, with longer periodicities dominant in the early Holocene. 3. The recognition of climate modulation of oscillatory systems by climate events. We examine the relationship of ENSO to a SH climate event, the Antarctic cold reversal (ACR), in the New Zealand region. We demonstrate that the onset of the ACR was associated with the apparent switching on of an ENSO signal in New Zealand. We infer that this related to enhanced zonal SW winds with the amplification of the pressure fields allowing an existing but weak ENSO signal to manifest itself. Teleconnections of this nature would be difficult to predict for future abrupt change as boundary conditions cannot readily be specified. Paleo-data are critical to predicting the teleconnections of future changes
Controlled formation of metallic nanowires via Au nanoparticle ac trapping
Applying ac voltages, we trapped gold nanoparticles between microfabricated
electrodes under well-defined conditions. We demonstrate that the nanoparticles
can be controllably fused together to form homogeneous gold nanowires with
pre-defined diameters and conductance values. Whereas electromigration is known
to form a gap when a dc voltage is applied, this ac technique achieves the
opposite, thereby completing the toolkit for the fabrication of nanoscale
junctions.Comment: Nanotechnology 18, 235202 (2007
A novel method for the isolation of subpopulations of rat adipose stem cells with different proliferation and osteogenic differentiation potentials
Bone marrow has been the elected cell source of studies published so far concerning bone and cartilage tissue-engineering approaches. Recent studies indicate that adipose tissue presents significant advantages over bone marrow as a cell source for tissue engineering. Most of these
studies report the use of adipose stem cells (ASCs) isolated by a method based on the enzymatic digestion of the adipose tissue and on the ability of stem cells to adhere to a cell culture plastic surface. Using this method, a heterogeneous population was obtained containing different cell types that have been shown to compromise the proliferation and differentiation potential of the
stem cells. This paper reports the development and optimization of a new isolation method that
enables purified cell populations to be obtained that exhibit higher osteogenic differentiation
and/or proliferation potential. This method is based on the use of immunomagnetic beads coated
with specific antibodies and it is compared with other methods described in the literature for
the selection of stem cell populations, e.g. methods based on a gradient solution and enzymatic
digestion. The results showed that the isolation method based on immunomagnetic beads allows
distinct subpopulations of rat ASCs to be isolated, showing different stem cells marker expressions
and different osteogenic differentiation potentials. Therefore, this method can be used to study
niches in ASC populations and/or also allow adipose tissue to be used as a stem cell source in a more efficient manner, increasing the potential of this cell source in future clinical applications.T. Rada thanks the EU Marie Curie Actions Alea Jacta Est for a PhD fellowship. This work was partially supported by the European Union-funded STREP Project HIPPOCRATES (Grant
No. NMP3-CT-2003-505758) and was carried out under the scope of the European NoE EXPERTISSUES (Grant No. NMP3-CT-2004-500283)
Evolution of the solar irradiance during the Holocene
Aims. We present a physically consistent reconstruction of the total solar
irradiance for the Holocene. Methods. We extend the SATIRE models to estimate
the evolution of the total (and partly spectral) solar irradiance over the
Holocene. The basic assumption is that the variations of the solar irradiance
are due to the evolution of the dark and bright magnetic features on the solar
surface. The evolution of the decadally averaged magnetic flux is computed from
decadal values of cosmogenic isotope concentrations recorded in natural
archives employing a series of physics-based models connecting the processes
from the modulation of the cosmic ray flux in the heliosphere to their record
in natural archives. We then compute the total solar irradiance (TSI) as a
linear combination of the jth and jth + 1 decadal values of the open magnetic
flux. Results. Reconstructions of the TSI over the Holocene, each valid for a
di_erent paleomagnetic time series, are presented. Our analysis suggests that
major sources of uncertainty in the TSI in this model are the heritage of the
uncertainty of the TSI since 1610 reconstructed from sunspot data and the
uncertainty of the evolution of the Earth's magnetic dipole moment. The
analysis of the distribution functions of the reconstructed irradiance for the
last 3000 years indicates that the estimates based on the virtual axial dipole
moment are significantly lower at earlier times than the reconstructions based
on the virtual dipole moment. Conclusions. We present the first physics-based
reconstruction of the total solar irradiance over the Holocene, which will be
of interest for studies of climate change over the last 11500 years. The
reconstruction indicates that the decadally averaged total solar irradiance
ranges over approximately 1.5 W/m2 from grand maxima to grand minima
Dynamics of a ferromagnetic domain wall and the Barkhausen effect
We derive an equation of motion for the the dynamics of a ferromagnetic
domain wall driven by an external magnetic field through a disordered medium
and we study the associated depinning transition. The long-range dipolar
interactions set the upper critical dimension to be , so we suggest that
mean-field exponents describe the Barkhausen effect for three-dimensional soft
ferromagnetic materials. We analyze the scaling of the Barkhausen jumps as a
function of the field driving rate and the intensity of the demagnetizing
field, and find results in quantitative agreement with experiments on
crystalline and amorphous soft ferromagnetic alloys.Comment: 4 RevTex pages, 3 ps figures embedde
- …
