475 research outputs found

    Abundance of Belugas, Delphinapterus leucas, in Cook Inlet, Alaska, 1994–2000

    Get PDF
    Annual abundance estimates of belugas, Delphinapterus leucas, in Cook Inlet were calculated from counts made by aerial observers and aerial video recordings. Whale group-size estimates were corrected for subsurface whales (availability bias) and whales that were at the surface but were missed (detection bias). Logistic regression was used to estimate the probability that entire groups were missed during the systematic surveys, and the results were used to calculate a correction to account for the whales in these missed groups (1.015, CV = 0.03 in 1994–98; 1.021, CV = 0.01 in 1999– 2000). Calculated abundances were 653 (CV = 0.43) in 1994, 491 (CV = 0.44) in 1995, 594 (CV = 0.28) in 1996, 440 (CV = 0.14) in 1997, 347 (CV = 0.29) in 1998, 367 (CV = 0.14) in 1999, and 435 (CV = 0.23, 95% CI=279–679) in 2000. For management purposes the current Nbest = 435 and Nmin = 360. These estimates replace preliminary estimates of 749 for 1994 and 357 for 1999. Monte Carlo simulations indicate a 47% probability that from June 1994 to June 1998 abundance of the Cook Inlet stock of belugas was depleted by 50%. The decline appears to have stopped in 1998

    Derivative observations in Gaussian Process models of dynamic systems

    Get PDF
    Gaussian processes provide an approach to nonparametric modelling which allows a straightforward combination of function and derivative observations in an empirical model. This is of particular importance in identification of nonlinear dynamic systems from experimental data. 1)It allows us to combine derivative information, and associated uncertainty with normal function observations into the learning and inference process. This derivative information can be in the form of priors specified by an expert or identified from perturbation data close to equilibrium. 2) It allows a seamless fusion of multiple local linear models in a consistent manner, inferring consistent models and ensuring that integrability constraints are met. 3) It improves dramatically the computational efficiency of Gaussian process models for dynamic system identification, by summarising large quantities of near-equilibrium data by a handful of linearisations, reducing the training size - traditionally a problem for Gaussian process models

    Development of a decision support tool to facilitate primary care management of patients with abnormal liver function tests without clinically apparent liver disease [HTA03/38/02]. Abnormal Liver Function Investigations Evaluation (ALFIE)

    Get PDF
    Liver function tests (LFTs) are routinely performed in primary care, and are often the gateway to further invasive and/or expensive investigations. Little is known of the consequences in people with an initial abnormal liver function (ALF) test in primary care and with no obvious liver disease. Further investigations may be dangerous for the patient and expensive for Health Services. The aims of this study are to determine the natural history of abnormalities in LFTs before overt liver disease presents in the population and identify those who require minimal further investigations with the potential for reduction in NHS costs

    Sideroflexin 3 is an α-synuclein-dependent mitochondrial protein that regulates synaptic morphology

    Get PDF
    α-Synuclein plays a central role in Parkinson's disease, where it contributes to the vulnerability of synapses to degeneration. However, the downstream mechanisms through which α-synuclein controls synaptic stability and degeneration are not fully understood. Here, comparative proteomics on synapses isolated from α-synuclein(-/-) mouse brain identified mitochondrial proteins as primary targets of α-synuclein, revealing 37 mitochondrial proteins not previously linked to α-synuclein or neurodegeneration pathways. Of these, sideroflexin 3 (SFXN3) was found to be a mitochondrial protein localized to the inner mitochondrial membrane. Loss of SFXN3 did not disturb mitochondrial electron transport chain function in mouse synapses, suggesting that its function in mitochondria is likely to be independent of canonical bioenergetic pathways. In contrast, experimental manipulation of SFXN3 levels disrupted synaptic morphology at the Drosophila neuromuscular junction. These results provide novel insights into α-synuclein-dependent pathways, highlighting an important influence on mitochondrial proteins at the synapse, including SFXN3. We also identify SFXN3 as a new mitochondrial protein capable of regulating synaptic morphology in vivo.</p

    Dynamic neighbour aware power-controlled MAC for multi-hop ad hoc networks

    Get PDF
    In Ad Hoc networks, resources in terms of bandwidth and battery life are limited; so using a fixed high transmission power limits the durability of a battery life and causes unnecessary high interference while communicating with closer nodes leading to lower overall network throughput. Thus, this paper proposes a new cross layer MAC called Dynamic Neighbour Aware Power-controlled MAC (Dynamic NA -PMAC) for multi-hop Ad Hoc networks that adjust the transmission power by estimating the communication distance based on the overheard signal strength. By dynamically controlling the transmission power based on the receivable signal strength, the probability of concurrent transmission, durability of battery life and bandwidth utilization increases. Moreover, in presence of multiple overlapping signals with different strengths, an optimal transmission power is estimated dynamically to maintain fairness and avoid hidden node issues at the same time. In a given area, since power is controlled, the chances of overlapping the sensing ranges of sources and next hop relay nodes or destination node decreases, so it enhances the probability of concurrent transmission and hence an increased overall throughput. In addition, this paper uses a variable backoff algorithm based on the number of active neighbours, which saves energy and increases throughput when the density of active neighbours is less. The designed mechanism is tested with various random network scenarios using different traffic including CBR, Exponential and TCP in both scenarios (stationary and mobile with high speed) for single as well as multi-hop. Moreover, the proposed model is benchmarked against two variants of power-controlled mechanisms namely Min NA-PMAC and MaxRC-MinDA NA-PMAC to prove that using a fixed minimum transmission power may lead to unfair channel access and using different transmission power for RTS/CTS and Data/ACK leads to lower probability of concurrent transmission respectively

    A process-based model of conifer forest structure and function with special emphasis on leaf lifespan

    Get PDF
    We describe the University of Sheffield Conifer Model (USCM), a process-based approach for simulating conifer forest carbon, nitrogen, and water fluxes by up-scaling widely applicable relationships between leaf lifespan and function. The USCM is designed to predict and analyze the biogeochemistry and biophysics of conifer forests that dominated the ice-free high-latitude regions under the high pCO2 “greenhouse” world 290–50 Myr ago. It will be of use in future research investigating controls on the contrasting distribution of ancient evergreen and deciduous forests between hemispheres, and their differential feedbacks on polar climate through the exchange of energy and materials with the atmosphere. Emphasis is placed on leaf lifespan because this trait can be determined from the anatomical characteristics of fossil conifer woods and influences a range of ecosystem processes. Extensive testing of simulated net primary production and partitioning, leaf area index, evapotranspiration, nitrogen uptake, and land surface energy partitioning showed close agreement with observations from sites across a wide climatic gradient. This indicates the generic utility of our model, and adequate representation of the key processes involved in forest function using only information on leaf lifespan, climate, and soils

    Carbohydrate dose influences liver and muscle glycogenoxidation and performance during prolonged exercise

    Get PDF
    This study investigated the effect of carbohydrate (CHO) dose and composi-tion on fuel selection during exercise, specifically exogenous and endogenous(liver and muscle) CHO oxidation. Ten trained males cycled in a double-blindrandomized order on 5 occasions at 77%_VO2maxfor 2 h, followed by a30-min time-trial (TT) while ingesting either 60 g�h�1(LG) or 75 g�h�113C-glucose (HG), 90 g�h�1(LGF) or 112.5 g�h�113C-glucose-13C-fructose ([2:1]HGF) or placebo. CHO doses met or exceed reported intestinal transportersaturation for glucose and fructose. Indirect calorimetry and stable mass iso-tope [13C] tracer techniques were utilized to determine fuel use. TT perfor-mance was 93% “likely/probable” to be improved with LGF compared withthe other CHO doses. Exogenous CHO oxidation was higher for LGF andHGF compared with LG and HG (ES&gt;1.34,P&lt;0.01), with the relative con-tribution of LGF (24.5�5.3%)moderatelyhigher than HGF (20.6�6.2%,ES=0.68). Increasing CHO dose beyond intestinal saturation increased abso-lute (29.2�28.6 g�h�1,ES=1.28,P=0.06) and relative muscle glycogenutilization (9.2�6.9%, ES=1.68,P=0.014) for glucose-fructose ingestion.Absolute muscle glycogen oxidation between LG and HG was not significantlydifferent, but wasmoderatelyhigher for HG (ES=0.60). Liver glycogen oxida-tion was not significantly different between conditions, but absolute and rela-tive contributions weremoderatelyattenuated for LGF (19.3�9.4 g�h�1,6.8�3.1%) compared with HGF (30.5�17.7 g�h�1, 10.1�4.0%, ES=0.79& 0.98). Total fat oxidation was suppressed in HGF compared with all otherCHO conditions (ES&gt;0.90,P=0.024–0.17). In conclusion, there was no lin-ear dose response for CHO ingestion, with 90 g�h�1of glucose-fructose beingoptimal in terms of TT performance and fuel selectio

    Liver and muscle glycogen oxidation and performance with dose variation of glucose-fructose ingestion during prolonged (3 h) exercise

    Get PDF
    Purpose This study investigated the effect of small manipulations in carbohydrate (CHO) dose on exogenous and endogenous (liver and muscle) fuel selection during exercise. Method Eleven trained males cycled in a double-blind randomised order on 4 occasions at 60% V˙O2max for 3 h, followed by a 30-min time-trial whilst ingesting either 80 g h−1 or 90 g h−1 or 100 g h−1 13C-glucose-13C-fructose [2:1] or placebo. CHO doses met, were marginally lower, or above previously reported intestinal saturation for glucose–fructose (90 g h−1). Indirect calorimetry and stable mass isotope [13C] techniques were utilised to determine fuel use. Result Time-trial performance was 86.5 to 93%, ‘likely, probable’ improved with 90 g h−1 compared 80 and 100 g h−1. Exogenous CHO oxidation in the final hour was 9.8–10.0% higher with 100 g h−1 compared with 80 and 90 g h−1 (ES = 0.64–0.70, 95% CI 9.6, 1.4 to 17.7 and 8.2, 2.1 to 18.6). However, increasing CHO dose (100 g h−1) increased muscle glycogen use (101.6 ± 16.6 g, ES = 0.60, 16.1, 0.9 to 31.4) and its relative contribution to energy expenditure (5.6 ± 8.4%, ES = 0.72, 5.6, 1.5 to 9.8 g) compared with 90 g h−1. Absolute and relative muscle glycogen oxidation between 80 and 90 g h−1 were similar (ES = 0.23 and 0.38) though a small absolute (85.4 ± 29.3 g, 6.2, − 23.5 to 11.1) and relative (34.9 ± 9.1 g, − 3.5, − 9.6 to 2.6) reduction was seen in 90 g h−1 compared with 100 g h−1. Liver glycogen oxidation was not significantly different between conditions (ES < 0.42). Total fat oxidation during the 3-h ride was similar in CHO conditions (ES < 0.28) but suppressed compared with placebo (ES = 1.05–1.51). Conclusion ‘Overdosing’ intestinal transport for glucose–fructose appears to increase muscle glycogen reliance and negatively impact subsequent TT performance

    Ena/VASP is required for endothelial barrier function in vivo

    Get PDF
    Enabled/vasodilator-stimulated phosphoprotein (Ena/VASP) proteins are key actin regulators that localize at regions of dynamic actin remodeling, including cellular protrusions and cell–cell and cell–matrix junctions. Several studies have suggested that Ena/VASP proteins are involved in the formation and function of cellular junctions. Here, we establish the importance of Ena/VASP in endothelial junctions in vivo by analysis of Ena/VASP-deficient animals. In the absence of Ena/VASP, the vasculature exhibits patterning defects and lacks structural integrity, leading to edema, hemorrhaging, and late stage embryonic lethality. In endothelial cells, we find that Ena/VASP activity is required for normal F-actin content, actomyosin contractility, and proper response to shear stress. These findings demonstrate that Ena/VASP is critical for actin cytoskeleton remodeling events involved in the maintenance of functional endothelia
    corecore