3,419 research outputs found

    Bayesian Inference on Matrix Manifolds for Linear Dimensionality Reduction

    Full text link
    We reframe linear dimensionality reduction as a problem of Bayesian inference on matrix manifolds. This natural paradigm extends the Bayesian framework to dimensionality reduction tasks in higher dimensions with simpler models at greater speeds. Here an orthogonal basis is treated as a single point on a manifold and is associated with a linear subspace on which observations vary maximally. Throughout this paper, we employ the Grassmann and Stiefel manifolds for various dimensionality reduction problems, explore the connection between the two manifolds, and use Hybrid Monte Carlo for posterior sampling on the Grassmannian for the first time. We delineate in which situations either manifold should be considered. Further, matrix manifold models are used to yield scientific insight in the context of cognitive neuroscience, and we conclude that our methods are suitable for basic inference as well as accurate prediction.Comment: All datasets and computer programs are publicly available at http://www.ics.uci.edu/~babaks/Site/Codes.htm

    On the physical meaning of the 2.1 keV absorption feature in 4U 1538-52

    Full text link
    The improvement of the capabilities of nowadays X-ray observatories, like Chandra or XMM-Newton, offers the possibility to detect both absorption and emission lines and to study the nature of the matter surrounding the neutron star in X-ray binaries and the phenomena that produce these lines. The aim of this work is to discuss the different physical scenarios in order to explain the meaning of the significant absorption feature present in the X-ray spectrum of 4U 1538-52. Using the last available calibrations, we discard the possibility that this feature is due to calibration, gain effects or be produced by the X-ray background or a dust region. Giving the energy resolution of the XMM-Newton telescope we could not establish if the line is formed in the atmosphere of the neutron star or by the dispersion of the stellar wind of the optical counterpart.Comment: 6 pages, 2 multipanel figures, accepted for publication on Proceedings of "An INTEGRAL view of the high-energy sky (the first 10 years)" the 9th INTEGRAL Workshop, October 15-19, 2012, Paris, France, in Proceedings of Science (INTEGRAL 2012), Eds. A. Goldwurm, F. Lebrun and C. Winkler, (http://pos.sissa.it/cgi-bin/reader/conf.cgi?confid=176), id PoS(INTEGRAL 2012)03

    UA3/1/7/2 Henry Cherry Campaign Letter

    Get PDF
    Form letter sent to supporters of Henry Cherry\u27s gubernatorial campaign

    Phage display selection of HIV specific conserved mimotopes with IgG from long-term non-progressors

    Get PDF
    Poster presentation Background The aim of this study is to identify conserved epitopes of HIV-1 neutralizing antibodies in polyclonal plasma from LTNP to finally derive vaccine candidates. Materials and methods The presence of neutralizing antibodies in 9 LTNP sera was proved by in vitro neutralization assays. Phage displayed peptide libraries were screened with LTNP IgG. HIV-specific mimotopes were analyzed for homology to the gp120 structure by a software (3DEX) especially developed for this purpose. Mice were immunized with interesting phages and their sera were analyzed for neutralizing activities against HIV-1. Results After biopannings, between 19% and 75% HIV-specific phage clones were identified by ELISA. Mimotope sequences were identified and could be aligned by 3DEX to linear or conformational epitopes on gp120. A peptide specific immune response was detected in sera of immunized mice. The first mice sera analyzed showed neutralizing activities against HIV-1. Conclusion Mimotopes could be selected from LTNP sera that represent conformational epitopes on gp120. Those ones inducing neutralizing antibodies upon immunization potentially are suited to derive vaccine candidates
    corecore