3 research outputs found

    A transition from river networks to scale-free networks

    Full text link
    A spatial network is constructed on a two dimensional space where the nodes are geometrical points located at randomly distributed positions which are labeled sequentially in increasing order of one of their co-ordinates. Starting with NN such points the network is grown by including them one by one according to the serial number into the growing network. The tt-th point is attached to the ii-th node of the network using the probability: πi(t)ki(t)tiα\pi_i(t) \sim k_i(t)\ell_{ti}^{\alpha} where ki(t)k_i(t) is the degree of the ii-th node and ti\ell_{ti} is the Euclidean distance between the points tt and ii. Here α\alpha is a continuously tunable parameter and while for α=0\alpha=0 one gets the simple Barab\'asi-Albert network, the case for α\alpha \to -\infty corresponds to the spatially continuous version of the well known Scheidegger's river network problem. The modulating parameter α\alpha is tuned to study the transition between the two different critical behaviors at a specific value αc\alpha_c which we numerically estimate to be -2.Comment: 5 pages, 5 figur

    REPRESENTATION OF SPACE-TIME VARIABILITY OF SOIL MOISTURE

    No full text
    A simplified spatial-temporal soil moisture model driven by stochastic spatial rainfall forcing is proposed. The model is mathematically tractable, and allows the spatial and temporal structure of soil moisture fields, induced by the spatial-temporal variability of rainfall and the spatial variability of vegetation, to be explored analytically. The influence of the main model parameters, reflecting the spatial scale of rain cells, the soil storage capacity, the rainfall interception and the soil water loss rate (representing evaporation and deep infiltration) is investigated. The variabilities of the spatially averaged soil moisture process, and that averaged in both space and time, are derived. The present analysis focuses on spatially uniform vegetation conditions; a follow-up paper will incorporate stochastically heterogeneous vegetation

    REPRESENTATION OF SPACE-TIME VARIABILITY OF SOIL MOISTURE

    No full text
    A simplified spatial-temporal soil moisture model driven by stochastic spatial rainfall forcing is proposed. The model is mathematically tractable, and allows the spatial and temporal structure of soil moisture fields, induced by the spatial-temporal variability of rainfall and the spatial variability of vegetation, to be explored analytically. The influence of the main model parameters, reflecting the spatial scale of rain cells, the soil storage capacity, the rainfall interception and the soil water loss rate (representing evaporation and deep infiltration) is investigated. The variabilities of the spatially averaged soil moisture process, and that averaged in both space and time, are derived. The present analysis focuses on spatially uniform vegetation conditions; a follow-up paper will incorporate stochastically heterogeneous vegetation
    corecore