20 research outputs found
Diagnosed hematological malignancies in Bangladesh - a retrospective analysis of over 5000 cases from 10 specialized hospitals
The importance of a Biosphere Reserve of Atlantic Forest for the conservation of stream fauna
Pan-cancer analysis of whole genomes
Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe
A multiscale study of fungal endophyte communities of the foliar endosphere of native rubber trees in Eastern Amazon
A influência do ruído ambiental no desempenho de escolares nos testes de padrão tonal de frequência e padrão tonal de duração
Evaluating the impact of classification algorithms and spatial resolution on the accuracy of land cover mapping in a mountain environment in Pakistan
Efficacy of intra-articular hyaluronic acid injections and exercise-based rehabilitation programme, administered as isolated or integrated therapeutic regimens for the treatment of knee osteoarthritis
A recipe for myositis: nuclear factor κB and nuclear factor of activated T-cells transcription factor pathways spiced up by cytokines
A panoramic view of the immune response to Trypanosoma cruzi infection
Chagas disease is a complex disorder in which the immunological response developed by the host plays a fundamental role, not only in the clearance of the parasite but also in the inflammatory status observed in specific affected tissues. Chagas disease has two phases, acute and chronic, the latter being established in those cases where treatment with currently available anti-parasitic drugs (Nifurtimox and Benznidazole) is either not applied or not effective. During the chronic phase, the disease may remain without any detectable symptoms for several decades, or progress toward cardiac, digestive, neurological forms, or even a combination of these alterations. The immune response developed in all of these conditions is flowery and comprises humoral and cellular components; however the clearance of the parasite is incomplete due to the multiple mechanisms that T. cruzi deploys in order to perpetuate itself within the host.Here, we make an extensive review of T. cruzi-host immune response interactions with special attention on human models, and also referring to the particular clinical scenario of etiological treatment in Chagas disease.Fil: Acevedo, Gonzalo Raúl. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; ArgentinaFil: Girard, Magalí Celeste. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; ArgentinaFil: Gomez, Karina Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; Argentin
