6,399 research outputs found
Magnetic Reconnection, Cosmic Ray Acceleration, and Gamma-Ray emission around Black Holes and Relativistic Jets
Particle acceleration by magnetic reconnection is now recognized as an
important process in magnetically dominated regions of galactic and
extragalactic black hole sources. This process helps to solve current puzzles
specially related to the origin of the very high energy flare emission in these
sources. In this review, we discuss this acceleration mechanism and show recent
analytical studies and multidimensional numerical SRMHD and GRMHD (special and
general relativistic magnetohydrodynamical) simulations with the injection of
test particles, which help us to understand this process both in relativistic
jets and coronal regions of these sources. The very high energy and neutrino
emission resulting from the accelerated particles by reconnection is also
discussed.Comment: Invited Review at the International Conference on Black Holes as
Cosmic Batteries: UHECRs and Multimessenger Astronomy - BHCB2018, 12-15
September, 2018, Foz du Iguazu, Brasil, in press in Procs. of Science. arXiv
admin note: text overlap with arXiv:1608.0317
Atomic structures of TDP-43 LCD segments and insights into reversible or pathogenic aggregation.
The normally soluble TAR DNA-binding protein 43 (TDP-43) is found aggregated both in reversible stress granules and in irreversible pathogenic amyloid. In TDP-43, the low-complexity domain (LCD) is believed to be involved in both types of aggregation. To uncover the structural origins of these two modes of β-sheet-rich aggregation, we have determined ten structures of segments of the LCD of human TDP-43. Six of these segments form steric zippers characteristic of the spines of pathogenic amyloid fibrils; four others form LARKS, the labile amyloid-like interactions characteristic of protein hydrogels and proteins found in membraneless organelles, including stress granules. Supporting a hypothetical pathway from reversible to irreversible amyloid aggregation, we found that familial ALS variants of TDP-43 convert LARKS to irreversible aggregates. Our structures suggest how TDP-43 adopts both reversible and irreversible β-sheet aggregates and the role of mutation in the possible transition of reversible to irreversible pathogenic aggregation
The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs) family
The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs) enzymes are secreted, multi-domain matrix-associated zinc metalloendopeptidases that have diverse roles in tissue morphogenesis and patho-physiological remodeling, in inflammation and in vascular biology. The human family includes 19 members that can be sub-grouped on the basis of their known substrates, namely the aggrecanases or proteoglycanases (ADAMTS1, 4, 5, 8, 9, 15 and 20), the procollagen N-propeptidases (ADAMTS2, 3 and 14), the cartilage oligomeric matrix protein-cleaving enzymes (ADAMTS7 and 12), the von-Willebrand Factor proteinase (ADAMTS13) and a group of orphan enzymes (ADAMTS6, 10, 16, 17, 18 and 19). Control of the structure and function of the extracellular matrix (ECM) is a central theme of the biology of the ADAMTS, as exemplified by the actions of the procollagen-N-propeptidases in collagen fibril assembly and of the aggrecanases in the cleavage or modification of ECM proteoglycans. Defects in certain family members give rise to inherited genetic disorders, while the aberrant expression or function of others is associated with arthritis, cancer and cardiovascular disease. In particular, ADAMTS4 and 5 have emerged as therapeutic targets in arthritis. Multiple ADAMTSs from different sub-groupings exert either positive or negative effects on tumorigenesis and metastasis, with both metalloproteinase-dependent and -independent actions known to occur. The basic ADAMTS structure comprises a metalloproteinase catalytic domain and a carboxy-terminal ancillary domain, the latter determining substrate specificity and the localization of the protease and its interaction partners; ancillary domains probably also have independent biological functions. Focusing primarily on the aggrecanases and proteoglycanases, this review provides a perspective on the evolution of the ADAMTS family, their links with developmental and disease mechanisms, and key questions for the future
Planetary Dynamics and Habitable Planet Formation In Binary Star Systems
Whether binaries can harbor potentially habitable planets depends on several
factors including the physical properties and the orbital characteristics of
the binary system. While the former determines the location of the habitable
zone (HZ), the latter affects the dynamics of the material from which
terrestrial planets are formed (i.e., planetesimals and planetary embryos), and
drives the final architecture of the planets assembly. In order for a habitable
planet to form in a binary star system, these two factors have to work in
harmony. That is, the orbital dynamics of the two stars and their interactions
with the planet-forming material have to allow terrestrial planet formation in
the habitable zone, and ensure that the orbit of a potentially habitable planet
will be stable for long times. We have organized this chapter with the same
order in mind. We begin by presenting a general discussion on the motion of
planets in binary stars and their stability. We then discuss the stability of
terrestrial planets, and the formation of potentially habitable planets in a
binary-planetary system.Comment: 56 pages, 29 figures, chapter to appear in the book: Planets in
Binary Star Systems (Ed. N. Haghighipour, Springer publishing company
Study of the Decays B0 --> D(*)+D(*)-
The decays B0 --> D*+D*-, B0 --> D*+D- and B0 --> D+D- are studied in 9.7
million Y(4S) --> BBbar decays accumulated with the CLEO detector. We determine
Br(B0 --> D*+D*-) = (9.9+4.2-3.3+-1.2)e-4 and limit Br(B0 --> D*+D-) < 6.3e-4
and Br(B0 --> D+D-) < 9.4e-4 at 90% confidence level (CL). We also perform the
first angular analysis of the B0 --> D*+D*- decay and determine that the
CP-even fraction of the final state is greater than 0.11 at 90% CL. Future
measurements of the time dependence of these decays may be useful for the
investigation of CP violation in neutral B meson decays.Comment: 21 pages, 5 figures, submitted to Phys. Rev.
Detecting microRNA binding and siRNA off-target effects from expression data.
Sylamer is a method for detecting microRNA target and small interfering RNA off-target signals in 3' untranslated regions from a ranked gene list, sorted from upregulated to downregulated, after a microRNA perturbation or RNA interference experiment. The output is a landscape plot that tracks occurrence biases using hypergeometric P-values for all words across the gene ranking. We demonstrated the utility, speed and accuracy of this approach on several datasets
Measurement of B(/\c->pKpi)
The /\c->pKpi yield has been measured in a sample of two-jet continuum events
containing a both an anticharm tag (Dbar) as well as an antiproton (e+e- ->
Dbar pbar X), with the antiproton in the hemisphere opposite the Dbar. Under
the hypothesis that such selection criteria tag e+e- -> Dbar pbar (/\c) X
events, the /\c->pkpi branching fraction can be determined by measuring the
pkpi yield in the same hemisphere as the antiprotons in our Dbar pbar X sample.
Combining our results from three independent types of anticharm tags, we obtain
B(/\c->pKpi)=(5.0+/-0.5+/-1.2)
The positive and negative impact of an intergenerational digital technology education programme on younger people’s perceptions of older adults
In order to meet the technological needs of older adults, and ensure digital inclusion, it is important for digital technology designers to accurately assess and understand older adults’ needs and requirements, free from the influence of societal assumptions of their capabilities. This study evaluated the impact of an intergenerational digital technology education programme on younger adults’ stereotypes of older people. Using an experimental design, results show that compared to a control group, students taking part in the programme subsequently rated older adults as more friendly but less competent. Practical implications for developing intergenerational education programmes are discussed
Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector
Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
Novel, synergistic antifungal combinations that target translation fidelity
There is an unmet need for new antifungal or fungicide treatments, as resistance to existing treatments grows. Combination treatments help to combat resistance. Here we develop a novel, effective target for combination antifungal therapy. Different aminoglycoside antibiotics combined with different sulphate-transport inhibitors produced strong, synergistic growth-inhibition of several fungi. Combinations decreased the respective MICs by ≥8 fold. Synergy was suppressed in yeast mutants resistant to effects of sulphate-mimetics (like chromate or molybdate) on sulphate transport. By different mechanisms, aminoglycosides and inhibition of sulphate transport cause errors in mRNA translation. The mistranslation rate was stimulated up to 10-fold when the agents were used in combination, consistent with this being the mode of synergistic action. A range of undesirable fungi were susceptible to synergistic inhibition by the combinations, including the human pathogens Candida albicans, C. glabrata and Cryptococcus neoformans, the food spoilage organism Zygosaccharomyces bailii and the phytopathogens Rhizoctonia solani and Zymoseptoria tritici. There was some specificity as certain fungi were unaffected. There was no synergy against bacterial or mammalian cells. The results indicate that translation fidelity is a promising new target for combinatorial treatment of undesirable fungi, the combinations requiring substantially decreased doses of active components compared to each agent alone
- …
