15 research outputs found
Mitochondria-Associated MicroRNAs in Rat Hippocampus Following Traumatic Brain Injury
Traumatic brain injury (TBI) is a major cause of death and disability. However, the molecular events contributing to the pathogenesis are not well understood. Mitochondria serve as the powerhouse of cells, respond to cellular demands and stressors, and play an essential role in cell signaling, differentiation, and survival. There is clear evidence of compromised mitochondrial function following TBI; however, the underlying mechanisms and consequences are not clear. MicroRNAs (miRNAs) are small non-coding RNA molecules that regulate gene expression post-transcriptionally, and function as important mediators of neuronal development, synaptic plasticity, and neurodegeneration. Several miRNAs show altered expression following TBI; however, the relevance of mitochondria in these pathways is unknown. Here, we present evidence supporting the association of miRNA with hippocampal mitochondria, as well as changes in mitochondria-associated miRNA expression following a controlled cortical impact (CCI) injury in rats. Specifically, we found that the miRNA processing proteins Argonaute (AGO) and Dicer are present in mitochondria fractions from uninjured rat hippocampus, and immunoprecipitation of AGO associated miRNA from mitochondria suggests the presence of functional RNA-induced silencing complexes. Interestingly, RT-qPCR miRNA array studies revealed that a subset of miRNA is enriched in mitochondria relative to cytoplasm. At 12h following CCI, several miRNAs are significantly altered in hippocampal mitochondria and cytoplasm. In addition, levels of miR-155 and miR-223, both of which play a role in inflammatory processes, are significantly elevated in both cytoplasm and mitochondria. We propose that mitochondria-associated miRNAs may play an important role in regulating the response to TBI
Calculation of the bootstrap current profile for the TJ-II stellarator
Calculations of the bootstrap current for the TJ-II stellarator are
presented. DKES and NEO-MC codes are employed; the latter has allowed, for the
first time, the precise computation of the bootstrap transport coefficient in
the long mean free path regime of this device. The low error bars allow a
precise convolution of the monoenergetic coefficients, which is confirmed by
error analysis. The radial profile of the bootstrap current is presented for
the first time for the 100_44_64 configuration of TJ-II for three different
collisionality regimes. The bootstrap coefficient is then compared to that of
other configurations of TJ-II regularly operated. The results show qualitative
agreement with toroidal current measurements; precise comparison with real
discharges is ongoing
Actitudes Éticas de los estudiantes y egresados en carrera de medicina con metodologías activas
ORBITALES, programa de calculo de funciones de onda para una potencial central analitica
Centro de Informacion y Documentacion Cientifica (CINDOC). C/Joaquin Costa, 22. 28002 Madrid. SPAIN / CINDOC - Centro de Informaciòn y Documentaciòn CientìficaSIGLEESSpai
PGA(1)-induced apoptosis involves specific activation of H-Ras and N-Ras in cellular endomembranes
The cyclopentenone prostaglandin A(1) (PGA(1)) is an inducer of cell death in cancer cells. However, the mechanism that initiates this cytotoxic response remains elusive. Here we report that PGA(1) triggers apoptosis by a process that entails the specific activation of H-and N-Ras isoforms, leading to caspase activation. Cells without H- and N-Ras did not undergo apoptosis upon PGA(1) treatment; in these cells, the cellular demise was rescued by overexpression of either H-Ras or N-Ras. Consistently, the mutant H-Ras-C118-S, defective for binding PGA(1), did not produce cell death. Molecular analysis revealed a key role for the RAF-MEK-ERK signaling pathway in the apoptotic process through the induction of calpain activity and caspase-12 cleavage. We propose that PGA(1) evokes a specific physiological cell death program, through H- and N-Ras, but not K-Ras, activation at endomembranes. Our results highlight a novel mechanism that may be of potential interest for tumor treatment.We thank T O'Boyle and D Perez-Sala for the critical reading of this manuscript. APR, TG, and LMD were recipients of fellowships from the Comunidad de Madrid (APR), Ministerio de Educacion y Ciencia (TG), and FIS-BEFI (LMD). Grant support was awarded to JMRC from Fondo de Investigaciones Sanitarias-Intrasalud (PI09/0562 and PI13/00703) and the Spanish Association Against Cancer. JLO received grants from the Fondo de Investigaciones Sanitarias (CP07/00141 and PI10/00815). AM received grants from Ministerio de Economia y Competitividad of Spain-Fondo Europeo de Desarrollo Regional (FEDER) to AM (SAF2013-43468-R), Comunidad de Madrid to AM (S2010/BMD-2344 Colomics2) and Instituto de Salud Carlos III-FEDER. JMS received grants from the Fondo de Investigaciones Sanitarias (PI070356) and `Ayuda Intramural de Incorporacion al CSIC'. ES, AM, JMRC, and PC, respectively, received Grants RD06/0020/0000 and RD12/0036/0001, RD06/0020/0003 and RD12/0036/0021, and RD06/0020/0105 and RD12/0036/0033 from Instituto de San Carlos III-RETIC (Red Tematica de Investigacion Cooperativa en Cancer).S
PGA(1)-induced apoptosis involves specific activation of H-Ras and N-Ras in cellular endomembranes
The cyclopentenone prostaglandin A1 (PGA1) is an inducer of cell death in cancer cells. However, the mechanism that initiates this cytotoxic response remains elusive. Here we report that PGA1 triggers apoptosis by a process that entails the specific activation of H- and N-Ras isoforms, leading to caspase activation. Cells without H- and N-Ras did not undergo apoptosis upon PGA1 treatment; in these cells, the cellular demise was rescued by overexpression of either H-Ras or N-Ras. Consistently, the mutant H-Ras-C118S, defective for binding PGA1, did not produce cell death. Molecular analysis revealed a key role for the RAF-MEK-ERK signaling pathway in the apoptotic process through the induction of calpain activity and caspase-12 cleavage. We propose that PGA1 evokes a specific physiological cell death program, through H- and N-Ras, but not K-Ras, activation at endomembranes. Our results highlight a novel mechanism that may be of potential interest for tumor treatment.status: publishe
The Role of Protein Denaturation Energetics and Molecular Chaperones in the Aggregation and Mistargeting of Mutants Causing Primary Hyperoxaluria Type I
Primary hyperoxaluria type I (PH1) is a conformational disease which result in the loss of alanine:glyoxylate aminotransferase (AGT) function. The study of AGT has important implications for protein folding and trafficking because PH1 mutants may cause protein aggregation and mitochondrial mistargeting. We herein describe a multidisciplinary study aimed to understand the molecular basis of protein aggregation and mistargeting in PH1 by studying twelve AGT variants. Expression studies in cell cultures reveal strong protein folding defects in PH1 causing mutants leading to enhanced aggregation, and in two cases, mitochondrial mistargeting. Immunoprecipitation studies in a cell-free system reveal that most mutants enhance the interactions with Hsc70 chaperones along their folding process, while in vitro binding experiments show no changes in the interaction of folded AGT dimers with the peroxisomal receptor Pex5p. Thermal denaturation studies by calorimetry support that PH1 causing mutants often kinetically destabilize the folded apo-protein through significant changes in the denaturation free energy barrier, whereas coenzyme binding overcomes this destabilization. Modeling of the mutations on a 1.9 Å crystal structure suggests that PH1 causing mutants perturb locally the native structure. Our work support that a misbalance between denaturation energetics and interactions with chaperones underlie aggregation and mistargeting in PH1, suggesting that native state stabilizers and protein homeostasis modulators are potential drugs to restore the complex and delicate balance of AGT protein homeostasis in PH1.This work was supported by the Spanish ministry of Science and Innovation (RYC2009-04147 and CSD2009-00088 to ALP, SAF2011-23933 to ES, and CSD2006-00015, S2010/BMD-2457 and BFU2011-25384 to AA) and Junta de Andalucia (P11CTS-7187 ALP); FPI predoctoral fellowships from the Spanish ministry of Science and Innovation to IF-R and NM-T
Syncytin-1 and its receptor is present in human gametes
MAIN PURPOSE AND RESEARCH QUESTION: To determine whether the true fusogen Syncytin-1 and its receptor (ASCT-2) is present in human gametes using qRT-PCR, immunoblotting and immunofluorescence. METHODS: Donated oocytes and spermatozoa, originating from a fertility center in tertiary referral university hospital, underwent qRT-PCR, immunoblotting and immunofluorescence analyzes. RESULTS: Quantitative RT-PCR of sperm samples from sperm donors showed that syncytin-1 is present in all samples, however, protein levels varied between donors. Syncytin-1 immunoreactivity predominates in the sperm head and around the equatorial segment. The receptor ASCT-2 is expressed in the acrosomal region and in the sperm tail. Moreover, ASCT-2, but not syncytin-1, is expressed in oocytes and the mRNA level increases with increasing maturity of the oocytes. CONCLUSIONS: Syncytin and its receptor are present in human gametes and localization and temporal appearance is consistent with a possible role in fusion between oocyte and sperm
