3,936 research outputs found
Recommended from our members
Combining Nearest Neighbor Predictions and Model-Based Predictions of Realized Variance: Does it Pay?
The increasing availability of intraday financial data has led to improvements in daily volatility forecasting through long-memory models of realized volatility. This paper demonstrates the merit of the non-parametric Nearest Neighbor (NN) approach for S&P 100 realized variance forecasting. A priori the NN approach is appealing because it can reproduce complex dynamic dependencies while largely avoiding misspecification and parameter estimation uncertainty, unlike model-based methods. We evaluate the forecasts through straddle trading profitability metrics and using conventional statistical accuracy criteria. The ranking of individual forecasts confirms that statistical accuracy does not have a one-to-one mapping into profitability. In turbulent markets, the NN forecasts lead to higher risk-adjusted profitability even though the model-based forecasts are statistically superior. In both calm and turbulent market conditions, the directional combination of NN and model-based forecasts is more profitable than any of the individual forecasts
NAD+ protects against EAE by regulating CD4+ T-cell differentiation
CD4+ T cells are involved in the development of autoimmunity, including multiple sclerosis (MS). Here we show that nicotinamide adenine dinucleotide (NAD+) blocks experimental autoimmune encephalomyelitis (EAE), a mouse model of MS, by inducing immune homeostasis through CD4+IFNγ+IL-10+ T cells and reverses disease progression by restoring tissue integrity via remyelination and neuroregeneration. We show that NAD+ regulates CD4+ T-cell differentiation through tryptophan hydroxylase-1 (Tph1), independently of well-established transcription factors. In the presence of NAD+, the frequency of T-bet−/− CD4+IFNγ+ T cells was twofold higher than wild-type CD4+ T cells cultured in conventional T helper 1 polarizing conditions. Our findings unravel a new pathway orchestrating CD4+ T-cell differentiation and demonstrate that NAD+ may serve as a powerful therapeutic agent for the treatment of autoimmune and other diseases
Preparation of Single-Phase Films of CH3NH3Pb(I1-xBrx)3 with Sharp Optical Band Edges.
Organometallic lead-halide perovskite-based solar cells now approach 18% efficiency. Introducing a mixture of bromide and iodide in the halide composition allows tuning of the optical bandgap. We prepare mixed bromide-iodide lead perovskite films CH3NH3Pb(I1-xBrx)3 (0 ≤ x ≤ 1) by spin-coating from solution and obtain films with monotonically varying bandgaps across the full composition range. Photothermal deflection spectroscopy, photoluminescence, and X-ray diffraction show that following suitable fabrication protocols these mixed lead-halide perovskite films form a single phase. The optical absorption edge of the pure triiodide and tribromide perovskites is sharp with Urbach energies of 15 and 23 meV, respectively, and reaches a maximum of 90 meV for CH3NH3PbI1.2Br1.8. We demonstrate a bromide-iodide lead perovskite film (CH3NH3PbI1.2Br1.8) with an optical bandgap of 1.94 eV, which is optimal for tandem cells of these materials with crystalline silicon devices.We acknowledge funding from the
Engineering and Physical Sciences Research Council (EPSRC) and the Winton Programme
(Cambridge) for the Physics of Sustainability. THT acknowledges funding from Cambridge
Australia Scholarships and the Cambridge Commonwealth Trust. D.C. acknowledges support
from St. John's College Cambridge and the Winton Programme (Cambridge) for the Physics of
Sustainability.This is the final published version. It's also available at: http://pubs.acs.org/doi/abs/10.1021/jz501332v
Measurement of the cosmic ray spectrum above eV using inclined events detected with the Pierre Auger Observatory
A measurement of the cosmic-ray spectrum for energies exceeding
eV is presented, which is based on the analysis of showers
with zenith angles greater than detected with the Pierre Auger
Observatory between 1 January 2004 and 31 December 2013. The measured spectrum
confirms a flux suppression at the highest energies. Above
eV, the "ankle", the flux can be described by a power law with
index followed by
a smooth suppression region. For the energy () at which the
spectral flux has fallen to one-half of its extrapolated value in the absence
of suppression, we find
eV.Comment: Replaced with published version. Added journal reference and DO
Mobile sensing for behavioral research: A component-based approach for rapid deployment of sensing campaigns
The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was partially funded by the National Council for Science and Technology (CONACYT) in Mexico through a scholarship provided to I.R.F. Also, this work was partially funded by the Instituto Tecnológico de Sonora (ITSON) through the PROFAPI program.Collecting experimental data from multiple sensing devices has just recently become quite popular in behavioral and
social sciences. Among existing devices, mobile phones stand out as they allow researchers to collect data from individuals
in an unbiased, precise, unobtrusive, and timely manner. Current mobile sensing applications are typically developed
from scratch, provide no reusable components, and frequently do not take advantage of the devices’ processing capabilities.
In light of such limitations, this work presents a novel tool that leverages mobile phones not only to collect data via
their sensors but also to process them on the device as soon as they are gathered. The tool provides researchers with
easy-to-use services that allow them to configure the required processing routines on the mobile phones. This work
proposes a new approach for rapid deployment of sensing campaigns targeted at scientists with basic technical knowledge
and requiring low effort. We performed an evaluation aimed at determining whether there is a significant improvement
in terms of user effectiveness and efficiency in the definition of new components. The results suggest that the
proposed tool speeds up the time and reduces the effort taken for setting up and deploying a sensing campaign
Modular control of multiple pathways using engineered orthogonal T7 polymerases
Synthetic genetic sensors and circuits enable programmable control over the timing and conditions of gene expression. They are being increasingly incorporated into the control of complex, multigene pathways and cellular functions. Here, we propose a design strategy to genetically separate the sensing/circuitry functions from the pathway to be controlled. This separation is achieved by having the output of the circuit drive the expression of a polymerase, which then activates the pathway from polymerase-specific promoters. The sensors, circuits and polymerase are encoded together on a ‘controller’ plasmid. Variants of T7 RNA polymerase that reduce toxicity were constructed and used as scaffolds for the construction of four orthogonal polymerases identified via part mining that bind to unique promoter sequences. This set is highly orthogonal and induces cognate promoters by 8- to 75-fold more than off-target promoters. These orthogonal polymerases enable four independent channels linking the outputs of circuits to the control of different cellular functions. As a demonstration, we constructed a controller plasmid that integrates two inducible systems, implements an AND logic operation and toggles between metabolic pathways that change Escherichia coli green (deoxychromoviridans) and red (lycopene). The advantages of this organization are that (i) the regulation of the pathway can be changed simply by introducing a different controller plasmid, (ii) transcription is orthogonal to host machinery and (iii) the pathway genes are not transcribed in the absence of a controller and are thus more easily carried without invoking evolutionary pressure.United States. Office of Naval Research (Award number N00014-10-1-0245)National Science Foundation (U.S.). (CCF-0943385)National Institutes of Health (U.S.) (AI067699)National Science Foundation (U.S.). Graduate Research FellowshipAmerican Society for Engineering Education. National Defense Science and Engineering Graduate FellowshipHertz Foundation. Graduate Fellowshi
Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory
The Auger Engineering Radio Array (AERA) is part of the Pierre Auger
Observatory and is used to detect the radio emission of cosmic-ray air showers.
These observations are compared to the data of the surface detector stations of
the Observatory, which provide well-calibrated information on the cosmic-ray
energies and arrival directions. The response of the radio stations in the 30
to 80 MHz regime has been thoroughly calibrated to enable the reconstruction of
the incoming electric field. For the latter, the energy deposit per area is
determined from the radio pulses at each observer position and is interpolated
using a two-dimensional function that takes into account signal asymmetries due
to interference between the geomagnetic and charge-excess emission components.
The spatial integral over the signal distribution gives a direct measurement of
the energy transferred from the primary cosmic ray into radio emission in the
AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air
shower arriving perpendicularly to the geomagnetic field. This radiation energy
-- corrected for geometrical effects -- is used as a cosmic-ray energy
estimator. Performing an absolute energy calibration against the
surface-detector information, we observe that this radio-energy estimator
scales quadratically with the cosmic-ray energy as expected for coherent
emission. We find an energy resolution of the radio reconstruction of 22% for
the data set and 17% for a high-quality subset containing only events with at
least five radio stations with signal.Comment: Replaced with published version. Added journal reference and DO
A note on comonotonicity and positivity of the control components of decoupled quadratic FBSDE
In this small note we are concerned with the solution of Forward-Backward
Stochastic Differential Equations (FBSDE) with drivers that grow quadratically
in the control component (quadratic growth FBSDE or qgFBSDE). The main theorem
is a comparison result that allows comparing componentwise the signs of the
control processes of two different qgFBSDE. As a byproduct one obtains
conditions that allow establishing the positivity of the control process.Comment: accepted for publicatio
- …
