2,671 research outputs found

    Simultaneous analysis of elastic scattering and transfer/breakup channels for the 6He+208Pb reaction at energies near the Coulomb barrier

    Get PDF
    The elastic and alpha-production channels for the 6He+208Pb reaction are investigated at energies around the Coulomb barrier (E_{lab}=14, 16, 18, 22, and 27 MeV). The effect of the two-neutron transfer channels on the elastic scattering has been studied within the Coupled-Reaction-Channels (CRC) method. We find that the explicit inclusion of these channels allows a simultaneous description of the elastic data and the inclusive alpha cross sections at backward angles. Three-body Continuum-Discretized Coupled-Channels (CDCC) calculations are found to reproduce the elastic data, but not the transfer/breakup data. The trivially-equivalent local polarization potential (TELP) derived from the CRC and CDCC calculations are found to explain the features found in previous phenomenological optical model calculations for this system.Comment: 7 pages, 6 figures (replaced with updated version

    Evaluation of the anti-angiogenic potential of hydroxytyrosol derivatives

    Get PDF
    Angiogenesis, a process which allows the formation of new vessels from pre-existing ones, is an essential phenomenon for tumor survival since it allows cancer cells to obtain nutrients and oxygen. This explains the increasing interest showed by many groups of research and pharmaceutical companies to find compounds with potential to disrupt at least one of the steps within the angiogenic process. Hydroxytyrosol (3,4-dihydroxyphenyl ethanol) has been identified as the most important health-related phenolic compound of virgin olive oil because of its pleiotropic effects on multiple targets. In 2012, our group identified hydroxytyrosol as an anti-angiogenic compound able to inhibit several key steps in the angiogenic process. In the present study, the potential effects of six hydroxytyrosol derivatives are tested and compared with those exhibited by hydroxytyrosol by making use of several in vitro and in vivo assays. Results indicate that these are candidate new anti-angiogenic compounds with potential utility in anti-tumor and anti-angiogenic therapies.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech [Our experimental work is supported by grants BIO2014-56092-R (MINECO and FEDER) and P12-CTS-1507 (Andalusian Government and FEDER) and funds from group BIO-267 (Andalusian Government). The "CIBER de Enfermedades Raras" is an initiative from the ISCIII (Spain)]. This communication has the support of a travel grant

    Electrochemical behavior of pt- a d pd-supported activated carbons with different functionalities

    Get PDF
    Due to their relatively low price, high surface area and versatile physic-chemical properties, conductive carbon materials are considered among the most promising supports of electroactive species and/or catalysts for different electrochemical devices, like supercapacitors, fuel cells, batteries, sensors, etc. [1]. However, in these applications, carbon supports are usually subjected to oxidation and/or corrosion processes, which can be promoted by the supported electroactive species and/or catalysts [2]. In this sense, although the surface functionalities of carbons seem to play a key role on their electrochemical response and stability, their influence in the presence of electroactive catalysts is still controversial. Particularly, the effect of phosphorous groups has been never reported. In this work, the influence of different oxygen and phosphorous functionalities on the electrochemical behavior of Pt- and Pd-supported activated carbons (ACs) has been studied. Various ACs showing similar surface areas (ca. 1400-1500 m2/g) and a rich variety of surface chemistry, with oxygen and phosphorous-like surface groups, were obtained by physical (CO2) (HAG800 support) or chemical (H3PO4) (HA3500 support) activation of olive stone. The ACs were used as support of Pd, Pt and Pd/Pt catalysts (Fig 1a), with nominal loadings of 0.5-1.0 wt%, by using the incipient-wetting impregnation method. The samples were characterized by N2 and CO2 adsorption, TEM, XRD, XPS, TPD experiments and different electrochemical techniques. Although the supported metals promote carbon electroxidation and/or corrosion (see the higher oxidation currents for the metalloaded sample – Fig 1b), the presence of surface phosphorous groups (HA3500-M samples) results in lower oxidation currents than in the case of P-free samples (HAG800-M samples) (Fig. 1.b). These results are in agreement with the oxidation resistance induced by phosphorous groups in oxidizing gas phase at high temperatures [3], and may support the statement that these phosphorous groups could enhance the durability of carbon-supported metal electrocatalysts for different electrochemical applications.Universidad de Málaga. Campus de Excelencia Andalucía Tech

    Different Methods for the Two-Nucleon T-Matrix in the Operator Form

    Get PDF
    We compare three methods to calculate the nucleon-nucleon t-matrix based on the three-dimensional formulation of J. Golak et al., Phys. Rev. C 81, 034006, (2010). In the first place we solve a system of complex linear inhomogeneous equations directly for the t-matrix. Our second method is based on iterations and a variant of the Lanczos algorithm. In the third case we obtain the t-matrix in two steps, solving a system of real linear equations for the k-matrix expansion coefficients and then solving an on-shell equation, which connects the scalar coefficients of the k- and t-matrices. A very good agreement among the three methods is demonstrated for selected nucleon-nucleon scattering observables using a chiral next-to-next-to-leading-order neutron-proton potential. We also apply our three-dimensional framework to the demanding problem of proton-proton scattering, using a corresponding version of the nucleon-nucleon potential and supplementing it with the (screened) Coulomb force, taken also in the three-dimensional form. We show converged results for two different screening functions and find a very good agreement with other methods dealing with proton-proton scattering.Comment: 18 pages, 10 figures (54 eps files

    Comportamiento electroquímico de carbones activados con presencia de grupos superficiales de fósforo

    Get PDF
    Debido a su elevada superficie específica y una combinación única de conductividad, estabilidad y gran versatilidad química-estructural, los carbones activados (CAs) se emplean como electrodos en diversas aplicaciones electroquímicas. En estas aplicaciones, los heteroátomos presentes en su superficie, tales como oxígeno y nitrógeno, juegan un papel muy importante. La presencia de grupos superficiales estables de fósforo ha sido menos estudiada, pero parece inducir efectos positivos en las propiedades electroquímicas de los materiales carbonosos, aumentando su conductividad, capacidad y/o actividad electrocatalítica en diversas reacciones. Además, se ha propuesto que dichos grupos aumentan la resistencia a la oxidación electroquímica del material en medio acuoso, lo que supone una prometedora aproximación para aumentar la densidad de energía de los supercondensadores en este medio. No obstante, a pesar de todas estas ventajas, no existen estudios que justifiquen las causas ni los mecanismos de tales efectos. En este trabajo se presenta un estudio sobre el efecto de los grupos superficiales de fósforo en la capacidad y la estabilidad electroquímica de un carbón activado.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Unbound exotic nuclei studied by projectile fragmentation

    Full text link
    We call "projectile fragmentation" of neutron halo nuclei the elastic breakup (diffraction) reaction, when the observable studied is the neutron-core relative energy spectrum. This observable has been measured in relation to the Coulomb breakup on heavy target and recently also on light targets. Such data enlighten the effect of the neutron final state interaction with the core of origin. Projectile fragmentation is studied here by a time dependent model for the excitation of a nucleon from a bound state to a continuum resonant state in a neutron-core complex potential which acts as a final state interaction. The final state is described by an optical model S-matrix so that both resonant and non resonant states of any continuum energy can be studied as well as deeply bound initial states. It turns out that due to the coupling between the initial and final states, the neutron-core free particle phase shifts are modified, in the exit channel, by an additional phase. Some typical numerical calculations for the relevant observables are presented and compared to experimental data. It is suggest that the excitation energy spectra of an unbound nucleus might reflect the structure of the parent nucleus from whose fragmentation they are obtained.Comment: Proceedings of the 11th Conference on Problems in Theoretican Nuclear Physics, Cortona, Italy, 2006. World Scientifi

    Moisture sorption properties and storage stability conditions of a nutraceutical system microencapsulated by spray drying

    Get PDF
    The adsorption isotherms of a nutraceutical system microencapsulated by spray drying were determined at 20, 35 and 40 °C. Experimental data of the isotherms were fitted using the GAB and Caurie models and the integral thermodynamic functions (enthalpy and entropy) were estimated by the Clausius-Clapeyron equation. The Kelvin and Halsey equations were adequate for calculation of pore radius which varied from 0.67 to 8.15 nm. The point of maximum stability (minimum integral entropy) was found between 3.61 and 3.81 kg H2O/100 kg d.s. (corresponding to water activity, aW, of 0.19-0.37). Enthalpy-entropy compensation for the microcapsules showed two isokinetic temperatures. The first isokinetic temperature was observed at low moisture contents (< 3.81 kg H2O/100 kg d.s.) and was controlled by changes in the entropy of water, whereas the second isokinetic temperature was considered to be enthalpy-driven (3.81-20 kg H2O/100 kg d.s.). Keywords: sorption isotherms, pore radius, minimum integral entropy, enthalphy-entropy compensation, water activity

    Parent-perceived child development in preschoolers engaging in play that includes physical activity

    Get PDF
    Physical activity can influence cognitive, linguistic, and emotional development from an early age in a positive way, emphasizing the importance of play in the daily activities of children. The aim was to describe the association between the weekly time spent by preschoolers in games that included physical activity and their child development, comparing that development when the game was played in the company of others. Fifty Chilean preschoolers with typically normative development (51.20 ± 9.92 months) participated. Sociodemographic data were collected employing an ad-hoc questionnaire. Parents recorded the types of games their children played for one week, the time spent, and with whom they played them. Finally, the Ages and Stages Questionnaire 3rd edition and socioemotional (ASQ-3 and ASQ-SE) were applied to assess child development in different areas. Those preschoolers who spent more time playing with weekly physical activity had higher scores in the communication area that included expressive and comprehensive communication (p=0.01), emotional communication (p≤0.05), socio-individual development (p=0.001), and adaptive functioning (p≤0.05). Likewise, children who performed plays that included physical activity with nearby adults showed higher scores in ASQ-SE adaptive functioning area (p≤0.05). The frequency of active play employed by preschoolers seems to influence different areas of child development associated with social factors
    corecore