126 research outputs found
Coronary plaque composition as assessed by greyscale intravascular ultrasound and radiofrequency spectral data analysis
Objectives: (i) To explore the relation between greyscale intravascular ultrasound (IVUS) plaque qualitative classification and IVUS radiofrequency data (RFD) analysis tissue types; (ii) to evaluate if plaque composition as assessed by RFD analysis can be predicted by visual assessment of greyscale IVUS images. Methods: In 120 IVUS-RFD cross-sections, a sector of the plaque with homogenous tissue composition (e.g., fibrous, fibrofatty, necrotic core, and dense calcium) was selected. Two experienced observers analyzed twice the corresponding greyscale IVUS images to: (1) classify the selected sectors according to greyscale IVUS plaque type classification and (2) predict the tissue type expected in the sector by RFD analysis. Results: In the greyscale IVUS plaque type classification, the observers agreed in 90/120 sectors (κ = 0.64). Calcified, soft and mixed plaques by greyscale IVUS classification were mainly composed of dense calcium, fibrofatty, and necrotic core, respectively, in the RFD analysis. The plaques classified in greyscale IVUS as fibrous were actually fibrous tissue by IVUS RFD in only 30% of the cases. Overall, high interobserver variability in the prediction of RFD results by visual assessment of greyscale IVUS images (κ = 0.23 for observer 1 and 0.55 for observer 2) was found. Sens
Assessment of coronary atherosclerosis by IVUS and IVUS-based imaging modalities: progression and regression studies, tissue composition and beyond
Cardiovascular disease remains the leading cause of mortality, morbidity and disability in the developed world, predominantly affecting the adult population. In the early 1990s coronary heart disease (CHD) was established as affecting one in two men and one in three women by the age of forty. Despite the dramatic progress in the field of cardiovascular medicine in terms of diagnosis and treatment of heart disease, modest improvements have only been achieved when the reduction of cardiovascular mortality and morbidity indices are assessed. To better understand coronary atherosclerosis, new imaging modalities have been introduced. These novel imaging modalities have been used in two ways: (1) for the characterization of plaque types; (2) for the assessment of the progression and regression of tissue types. These two aspects will be discussed in this review
Positive remodeling at 3 year follow up is associated with plaque free coronary wall segment at baseline: A serial IVUS study
Aims: At present it is unknown what limits the arterial remodeling process during atherosclerotic plaque formation. In healthy arteries remodeling is regulated by the shear stress induced response by the endothelium. As endothelium at the plaque site is assumed to be dysfunctional, we tested the hypothesis that plaque free wall (PFW) determines vascular remodeling during atherosclerotic plaque build-up. Methods & results: 66 human coronary ROIs (38 patients) were studied at baseline and at 3 years follow up applying intravascular ultrasound (IVUS). From the IVUS images the lumen and external elastic membrane contours were delineated to assess wall thickness (WT), vessel area (VA), Plaque Area (PA) and plaque burden (PA/VA* 100%). WT < 0.5 mm was defined as normal and determined the arc of the PFW (0e360 degrees). Positive remodeling was defined as relative difference of VA over time >5%. At baseline, IVUS-PFW was inversely related to plaque burden (p < 0.05). Positive remodeling was most frequently observed in ROIs with IVUS-PFW > 180 degrees (i.e. larger than half of the circumference) compared to PFW < 180 degrees (55% vs. 12%, p < 0.05). Accordingly, plaques with IVUS-PFW > 180 degrees at baseline had the largest change in VA (1.1 +/- 2.1 vs. -0.4 +/- 0.6 mm(2), p < 0.05) with an odds ratio of 9.2 to develop positive remodeling. Conclusions: Our serial IVUS data show that IVUS-PFW is a determinant of vascular remodeling. ROIs with PFW > 180 at baseline had the highest probability to undergo positive remodeling. (C) 2014 Elsevier Ireland Ltd. All rights reserved
Reproducibility of volumetric intravascular ultrasound radiofrequency-based analysis of coronary plaque composition in vivo
Intravascular ultrasound radiofrequency (RF-IVUS) data permit the analysis of coronary plaque composition in vivo and is used as an endpoint of ongoing pharmacological intervention trials. We assessed the reproducibility of volumetric RF-IVUS analyses in mild-to-moderately diseased atherosclerotic human coronary arteries in vivo. A total of 9,212 IVUS analyses on cross-sectional IVUS frames was performed to evaluate the reproducibility of volumetric RF-IVUS measurements in 33 coronary segments with a length of 27 ± 7 mm. For vessel, lumen, and plaque + media volume the relative measurement differences (P = NS for all) were (A = intraobserver comparison, same pullback) −0.40 ± 1.0%; −0.48 ± 1.4%; −0.35 ± 1.6%, (B = intraobserver comparison, repeated pullback) −0.42 ± 1.2%; −0.52 ± 1.8%; −0.43 ± 4.5% (C = interobserver comparison, same pullback) 0.71 ± 1.8%; 0.71 ± 2.2%, and 0.89 ± 5.0%, respectively. For fibrous, fibro-lipidic, calcium, and necrotic-core volumes the relative measurement differences (P = NS for all) were (A) 0.45 ± 2.1%; −1.12 ± 4.9%; −0.84 ± 2.1%; −0.22 ± 1.8%, (B) 1.40 ± 4.1%; 1.26 ± 6.7%; 2.66 ± 7.4%; 0.85 ± 4.4%, and (C) −1.60 ± 4.9%; 3.85 ± 8.2%; 1.66 ± 7.5%, and −1.58 ± 4.7%, respectively. Of note, necrotic-core volume showed on average the lowest measurement variability. Thus, in mild-to-moderate atherosclerotic coronary artery disease the reproducibility of volumetric compositional RF-IVUS measurements from the same pullback is relatively high, but lower than the reproducibility of geometrical IVUS measurements. Measurements from repeated pullbacks and by different observers show acceptable reproducibilities; the volumetric measurement of the necrotic-core shows on average the highest reproducibility of the compositional RF-IVUS measurement
Interstudy reproducibility of the second generation, Fourier domain optical coherence tomography in patients with coronary artery disease and comparison with intravascular ultrasound: a study applying automated contour detection
Recently, Fourier domain OCT (FD-OCT) has been introduced for clinical use. This approach allows in vivo, high resolution (15 micron) imaging with very fast data acquisition, however, it requires brief flushing of the lumen during imaging. The reproducibility of such fast data acquisition under intracoronary flush application is poorly understood. To assess the inter-study variability of FD-OCT and to compare lumen morphometry to the established invasive imaging method, IVUS. 18 consecutive patients with coronary artery disease scheduled for PCI were included. In each target vessel a FD-OCT pullback (MGH system, light source 1,310 nm, 105 fps, pullback speed 20 mm/s) was acquired during brief (3 s) injection of X-ray contrast (flow 3 ml/s) through the guiding catheter. A second pullback was repeated under the same conditions after re-introduction of the FD OCT catheter into the coronary artery. IVUS and OCT imaging was performed in random order. FD-OCT and IVUS pullback data were analyzed using a recently developed software employing semi automated lumen contour and stent strut detection algorithms. Corresponding ROI were matched based on anatomical landmarks such as side branches and/or stent edges. Inter-study variability is presented as the absolute difference between the two pullbacks. FD-OCT showed remarkably good reproducibility. Inter-study variability in native vessels (cohort A) was very low for mean and minimal luminal area (0.10 ± 0.38, 0.19 ± 0.57 mm[superscript 2], respectively). Likewise inter-study variability was very low in stented coronary segments (cohort B) for mean lumen, mean stent, minimal luminal and minimal stent area (0.06 ± 0.08, 0.07 ± 0.10, 0.04 ± 0.09, 0.04 ± 0.10 mm[superscript 2], respectively). Comparison to IVUS morphometry revealed no significant differences. The differences between both imaging methods, OCT and IVUS, were very low for mean lumen, mean stent, minimal luminal and minimal stent area (0.10 ± 0.45, 0.10 ± 0.36, 0.26 ± 0.54, 0.05 ± 0.47 mm[superscript 2], respectively). FD-OCT shows excellent reproducibility and very low inter-study variability in both, native and stented coronary segments. No significant differences in quantitative lumen morphometry were observed between FD-OCT and IVUS. Evaluating these results suggest that FD-OCT is a reliable imaging tool to apply in longitudinal coronary artery disease studie
Is size really all that matters? Remarks on size and necrotic core content of atherosclerotic plaques
Coronary computed tomography angiography investigation of the association between left main coronary artery bifurcation angle and risk factors of coronary artery disease
To explore the association between the left main coronary artery bifurcation angle and common atherosclerotic risk factors with regard to the development of coronary artery disease (CAD) using coronary computed tomography angiography (CCTA). A retrospective review of 196 CCTA cases (129 males, 67 females, mean age 58 ± 10.5 years) was conducted. The bifurcation angle between the left anterior descending (LAD) and left circumflex (LCx) was measured on two-dimensional (2D) and three-dimensional (3D) reconstructed images and the type of plaque and degree of lumen stenosis was assessed to determine the disease severity. An association between bifurcation angle and patient risk factors [gender, body mass index (BMI), hypertension, cholesterol, diabetes, smoking and family history] of CAD was also assessed to demonstrate the relationship between these variables. The mean bifurcation angle between the LAD and LCx was 79.40° ± 22.97°, ranging from 35.5° to 178°. Gender and BMI were found to have significant associations with bifurcation angle. Males were at 2.07-fold greater risk of having a >80° bifurcation angle and developing CAD than females (P = 0.003), and patients with high BMI (>25 kg/m2) were 2.54-fold more likely to have a >80° bifurcation angle than patients with a normal BMI (P = 0.001) and thus were at greater risk of developing CAD. There is a direct relationship between the left main coronary artery bifurcation angle and patient gender and BMI. Measurement of the bifurcation angle should be incorporated into clinical practice to identify patients at high risk of developing CAD
- …
