6 research outputs found
Intrinsic Correlation between Hardness and Elasticity in Polycrystalline Materials and Bulk Metallic Glasses
Though extensively studied, hardness, defined as the resistance of a material
to deformation, still remains a challenging issue for a formal theoretical
description due to its inherent mechanical complexity. The widely applied
Teter's empirical correlation between hardness and shear modulus has been
considered to be not always valid for a large variety of materials. Here,
inspired by the classical work on Pugh's modulus ratio, we develop a
theoretical model which establishes a robust correlation between hardness and
elasticity for a wide class of materials, including bulk metallic glasses, with
results in very good agreement with experiment. The simplified form of our
model also provides an unambiguous theoretical evidence for Teter's empirical
correlation.Comment: 10 pages, 4 figures and 3 table
A new strategy based on electrospray technique to prepare dual-responsive poly(ether urethane) nanogels
Synthesis and characterisation of non-ionic AB-diblock nanoparticles prepared by RAFT dispersion polymerization with polymerization-induced self-assembly
The synthesis and characterisation of soft matter nanoparticles based on AB diblock copolymers of oligo(ethylene glycol)methyl ether methacrylate (OEGMA) with 3-phenylpropyl methacrylate (PPMA) is described. Reversible addition–fragmentation chain transfer dispersion polymerization formulations that result in polymerization-induced self-assembly (RAFTDP-PISA) in methanol were utilized to access a range of poly(OEGMA-b-PPMA) (p(OEGMA-b-PPMA)) nanoparticles with the sphere-to-worm-to-vesicle order–order transitions being readily observed with increasing average degree of polymerization ([X with combining macron]n) of the pPPMA block for a fixed [X with combining macron]n of 28 for the pOEGMA block. Similarly the effect of total copolymer concentration on the resulting nanoparticle morphology is also demonstrated whereby we highlight how tuning of worm micelle diameters can be accomplished simply by varying the concentration of a formulation. The block copolymer nanoparticles were characterized by size exclusion chromatography (SEC), 1H NMR spectroscopy, transmission electron microscopy (TEM) and small angle X-ray scattering (SAXS). Additionally, we report the first examples utilizing 3D electron tomography and in situ atomic force microscopy (AFM) in methanol as convenient and powerful complementary techniques for the characterization of the resulting soft matter nano-objects with an emphasis on the direct visualization of worm nanoparticles
