2,055 research outputs found
Ram pressure stripping of disk galaxies in galaxy clusters
While galaxies move through the intracluster medium of their host cluster,
they experience a ram pressure which removes at least a significant part of
their interstellar medium. This ram pressure stripping appears to be especially
important for spiral galaxies: this scenario is a good candidate to explain the
differences observed between cluster spirals in the nearby universe and their
field counterparts. Thus, ram pressure stripping of disk galaxies in clusters
has been studied intensively during the last decade. I review advances made in
this area, concentrating on theoretical work, but continuously comparing to
observations.Comment: 11 pages, 4 figures, to appear in proceedings of symposium "Matter
Cycles of Galaxies in Clusters" at JENAM 2008 (Vienna, Sept 2008), to be
published in special issue of Astronomische Nachrichten in Nov 2009. Version
with full resolution figures at
http://www.faculty.iu-bremen.de/eroediger/PAPERS/eroediger_RPS_review09.pd
Fast simulations of gas sloshing and cold front formation
We present a simplified and fast method for simulating minor mergers between
galaxy clusters. Instead of following the evolution of the dark matter halos
directly by the N-body method, we employ a rigid potential approximation for
both clusters. The simulations are run in the rest frame of the more massive
cluster and account for the resulting inertial accelerations in an optimised
way. We test the reliability of this method for studies of minor merger induced
gas sloshing by performing a one-to-one comparison between our simulations and
hydro+N-body ones. We find that the rigid potential approximation reproduces
the sloshing-related features well except for two artefacts: the temperature
just outside the cold fronts is slightly over-predicted, and the outward motion
of the cold fronts is delayed by typically 200 Myr. We discuss reasons for both
artefacts.Comment: 14 pages, 15 figures. Accepted by MNRA
Kelvin-Helmholtz instabilities at the sloshing cold fronts in the Virgo cluster as a measure for the effective ICM viscosity
Sloshing cold fronts (CFs) arise from minor merger triggered gas sloshing.
Their detailed structure depends on the properties of the intra-cluster medium
(ICM): hydrodynamical simulations predict the CFs to be distorted by
Kelvin-Helmholtz instabilities (KHIs), but aligned magnetic fields, viscosity,
or thermal conduction can suppress the KHIs. Thus, observing the detailed
structure of sloshing CFs can be used to constrain these ICM properties. Both
smooth and distorted sloshing CFs have been observed, indicating that the KHI
is suppressed in some clusters, but not in all. Consequently, we need to
address at least some sloshing clusters individually before drawing general
conclusions about the ICM properties. We present the first detailed attempt to
constrain the ICM properties in a specific cluster from the structure of its
sloshing CF. Proximity and brightness make the Virgo cluster an ideal target.
We combine observations and Virgo-specific hydrodynamical sloshing simulations.
Here we focus on a Spitzer-like temperature dependent viscosity as a mechanism
to suppress the KHI, but discuss the alternative mechanisms in detail. We
identify the CF at 90 kpc north and north-east of the Virgo center as the best
location in the cluster to observe a possible KHI suppression. For viscosities
10% of the Spitzer value KHIs at this CF are suppressed. We describe
in detail the observable signatures at low and high viscosities, i.e. in the
presence or absence of KHIs. We find indications for a low ICM viscosity in
archival XMM-Newton data and demonstrate the detectability of the predicted
features in deep Chandra observations.Comment: Accepted for ApJ; 15 pages, 11 figures. A movie can be found here:
http://www.hs.uni-hamburg.de/DE/Ins/Per/Roediger/research.html#Virgo-viscou
Shock heating by FR I radio sources in galaxy clusters
Feedback by active galactic nuclei (AGN) is frequently invoked to explain the
cut-off of the galaxy luminosity function at the bright end and the absence of
cooling flows in galaxy clusters. Meanwhile, there are recent observations of
shock fronts around radio-loud AGN. Using realistic 3D simulations of jets in a
galaxy cluster, we address the question what fraction of the energy of active
galactic nuclei is dissipated in shocks. We find that weak shocks that
encompass the AGN have Mach numbers of 1.1-1.2 and dissipate at least 2% of the
mechanical luminosity of the AGN. In a realistic cluster medium, even a
continuous jet can lead to multiple shock structures, which may lead to an
overestimate of the AGN duty cycles inferred from the spatial distribution of
waves.Comment: accepted by MNRAS Letter
Star formation in shocked cluster spirals and their tails
Recent observations of ram pressure stripped spiral galaxies in clusters
revealed details of the stripping process, i.e., the truncation of all
interstellar medium (ISM) phases and of star formation (SF) in the disk, and
multiphase star-forming tails. Some stripped galaxies, in particular in merging
clusters, develop spectacular star-forming tails, giving them a jellyfish-like
appearance. In merging clusters, merger shocks in the intra-cluster medium
(ICM) are thought to have overrun these galaxies, enhancing the ambient ICM
pressure and thus triggering SF, gas stripping and tail formation. We present
idealised hydrodynamical simulations of this scenario, including standard
descriptions for SF and stellar feedback. To aid the interpretation of recent
and upcoming observations, we focus on particular structures and dynamics in SF
patterns in the remaining gas disk and in the near tails, which are easiest to
observe. The observed jellyfish morphology is qualitatively reproduced for,
both, face-on and edge-on stripping. In edge-on stripping, the interplay
between the ICM wind and the disk rotation leads to asymmetries along the ICM
wind direction and perpendicular to it. The apparent tail is still part of a
highly deformed gaseous and young stellar disk. In both geometries, SF takes
place in knots throughout the tail, such that the stars in the tails show no
ordered age gradients. Significant SF enhancement in the disk occurs only at
radii where the gas will be stripped in due course.Comment: 6 pages, submitted to MNRAS Letter
Viscous Kelvin-Helmholtz instabilities in highly ionised plasmas
Transport coefficients in highly ionised plasmas like the intra-cluster
medium (ICM) are still ill-constrained. They influence various processes, among
them the mixing at shear flow interfaces due to the Kelvin-Helmholtz
instability (KHI). The observed structure of potential mixing layers can be
used to infer the transport coefficients, but the data interpretation requires
a detailed knowledge of the long-term evolution of the KHI under different
conditions. Here we present the first systematic numerical study of the effect
of constant and temperature-dependent isotropic viscosity over the full range
of possible values. We show that moderate viscosities slow down the growth of
the KHI and reduce the height of the KHI rolls and their rolling-up.
Viscosities above a critical value suppress the KHI. The effect can be
quantified in terms of the Reynolds number Re = U{\lambda}/{\nu}, where U is
the shear velocity, {\lambda} the perturbation length, and {\nu} the kinematic
viscosity. We derive the critical Re for constant and temperature dependent,
Spitzer-like viscosities, an empirical relation for the viscous KHI growth time
as a function of Re and density contrast, and describe special behaviours for
Spitzer-like viscosities and high density contrasts. Finally, we briefly
discuss several astrophysical situations where the viscous KHI could play a
role, i.e., sloshing cold fronts, gas stripping from galaxies, buoyant
cavities, ICM turbulence, and high velocity clouds.Comment: Accepted by MNRAS. 22 pages, 21 figure
Stripped elliptical galaxies as probes of ICM physics: II. Stirred, but mixed? Viscous and inviscid gas stripping of the Virgo elliptical M89
Elliptical galaxies moving through the intra-cluster medium (ICM) are
progressively stripped of their gaseous atmospheres. X-ray observations reveal
the structure of galactic tails, wakes, and the interface between the galactic
gas and the ICM. This fine-structure depends on dynamic conditions (galaxy
potential, initial gas contents, orbit in the host cluster), orbital stage
(early infall, pre-/post-pericenter passage), as well as on the still
ill-constrained ICM plasma properties (thermal conductivity, viscosity,
magnetic field structure). Paper I describes flow patterns and stages of
inviscid gas stripping. Here we study the effect of a Spitzer-like temperature
dependent viscosity corresponding to Reynolds numbers, Re, of 50 to 5000 with
respect to the ICM flow around the remnant atmosphere. Global flow patterns are
independent of viscosity in this Reynolds number range. Viscosity influences
two aspects: In inviscid stripping, Kelvin-Helmholtz instabilities (KHIs) at
the sides of the remnant atmosphere lead to observable horns or wings.
Increasing viscosity suppresses KHIs of increasing length scale, and thus
observable horns and wings. Furthermore, in inviscid stripping, stripped
galactic gas can mix with the ambient ICM in the galaxy's wake. This mixing is
suppressed increasingly with increasing viscosity, such that viscously stripped
galaxies have long X-ray bright, cool wakes. We provide mock X-ray images for
different stripping stages and conditions. While these qualitative results are
generic, we tailor our simulations to the Virgo galaxy M89 (NGC 4552), where
Re~ 50 corresponds to a viscosity of 10% of the Spitzer level. Paper III
compares new deep Chandra and archival XMM-Newton data to our simulations.Comment: ApJ in press. 16 pages, 16 figures. Text clarified, conclusions
unchange
Stripped elliptical galaxies as probes of ICM physics : III. Deep Chandra observation of NGC 4552 - Measuring the viscosity of the intracluster medium
We present results from a deep (200 ks) Chandra observation of the early-type galaxy NGC 4552 (M89) which is falling into the Virgo cluster. Previous shallower X-ray observations of this galaxy showed a remnant gas core, a tail to the South of the galaxy, and twin `horns' attached to the northern edge of the gas core [machacek05a]. In our deeper data, we detect a diffuse, low surface brightness extension to the previously known tail, and measure the temperature structure within the tail. We combine the deep Chandra data with archival XMM-Newton observations to put a strong upper limit on the diffuse emission of the tail out to a large distance (10×the radius of the remnant core) from the galaxy center. In our two previous papers [roediger15a,roediger15b], we presented the results of hydrodynamical simulations of ram pressure stripping specifically for M89 falling into the Virgo cluster and investigated the effect of ICM viscosity. In this paper, we compare our deep data with our specifically tailored simulations and conclude that the observed morphology of the stripped tail in NGC 4552 is most similar to the inviscid models. We conclude that, to the extent the transport processes can be simply modeled as a hydrodynamic viscosity, the ICM viscosity is negligible. More generally, any micro-scale description of the transport processes in the high-β plasma of the cluster ICM must be consistent with the efficient mixing observed in the stripped tail on macroscopic scales
The infall of the Virgo elliptical galaxy M60 toward M87 and the gaseous structures produced by Kelvin-Helmholtz instabilities
We present Chandra observations of hot gas structures, characteristic of gas stripping during infall, in the Virgo cluster elliptical galaxy M60 (NGC4649) located 1 Mpc east of M87. 0.5−2 keV Chandra X-ray images show a sharp leading edge in the surface brightness 12.4±0.1 kpc north and west of the galaxy center in the direction of M87 characteristic of a merger cold front due to M60's motion through the Virgo ICM. We measured a temperature of 1.00±0.02 keV for abundance 0.5Z⊙ inside the edge and 1.37+0.35−0.19 keV for abundance 0.1Z⊙ in the Virgo ICM free stream region. We find that the observed jump in surface brightness yields a density ratio of 6.44+1.04−0.67 between gas inside the edge and in the cluster free stream region. If the edge is a cold front due solely to the infall of M60 in the direction of M87, we find a pressure ratio of 4.7+1.7−1.4 and Mach number 1.7±0.3. For 1.37 keV Virgo gas we find a total infall velocity for M60 of 1030±180 kms−1. We calculate the motion in the plane of the sky to be 1012+183−192 km−1 implying an inclination angle ξ=11±3 degrees. Surface brightness profiles show the presence of a faint diffuse gaseous tail. We identify filamentary, gaseous wing structures caused by the galaxy's motion through the ICM. The structure and dimensions of these wings are consistent with simulations of Kelvin-Helmholtz instabilities as expected if the gas stripping is close to inviscid
Deep Chandra observations of the stripped galaxy group falling into Abell 2142
In the local Universe, the growth of massive galaxy clusters mainly operates
through the continuous accretion of group-scale systems. The infalling group in
Abell 2142 is the poster child of such an accreting group, and as such, it is
an ideal target to study the astrophysical processes induced by structure
formation. We present the results of a deep (200 ks) observation of this
structure with Chandra, which highlights the complexity of this system in
exquisite detail. In the core of the group, the spatial resolution of Chandra
reveals the presence of a leading edge and a complex AGN-induced activity. The
morphology of the stripped gas tail appears straight in the innermost 250 kpc,
suggesting that magnetic draping efficiently shields the gas from its
surroundings. However, beyond kpc from the core, the tail flares and
the morphology becomes strongly irregular, which could be explained by a
breaking of the drape, e.g. because of turbulent motions. The power spectrum of
surface-brightness fluctuations is relatively flat (),
which indicates that thermal conduction is strongly inhibited even beyond the
region where magnetic draping is effective. The amplitude of density
fluctuations in the tail is consistent with a mild level of turbulence with a
Mach number . Overall, our results show that the processes
leading to the thermalization and mixing of the infalling gas are slow and
relatively inefficient.Comment: Accepted for publication in A&
- …
