2,665 research outputs found

    Temporal and Spatial Distribution of the Oriental Beetle (Coleoptera: Scarabaeidae) in a Golf Course Environment

    Get PDF
    The mating season of the oriental beetle, Exomala orientalis (Waterhouse), in 1994 and 1995 at Bethpage State Park, Farmingdale, NY (40° 45′ N, 73° 28′ W) began in the middle of June, peaked in the 1st wk of July, and ended in the middle of August. There were differences in the emergence schedule among fairways as well as local differences between roughs and fairway. Both sexes were most active around sunset on shorter-cut turf (i.e., fairways, greens, and tees, versus roughs), and the few individuals seen during the daylight hours were mostly males. These males were generally found perched on vegetation at the border of the fairway. Feeding was not observed, except on flowers by females devoid of mature eggs. This study confirms our observations on the pattern of activity in an earlier study conducted with the use of synthetic pheromone traps. It also explains the difficulty encountered by earlier workers in finding adults of this insect in the field. Implications of the above findings on the management of the oriental beetle are discusse

    Identification of 13 DB + dM and 2 DC + dM binaries from the Sloan Digital Sky Survey

    Full text link
    We present the identification of 13 DB + dM binaries and 2 DC + dM binaries from the Sloan Digital Sky Survey (SDSS). Before the SDSS only 2 DB + dM binaries and 1 DC + dM binary were known. At least three, possibly 8, of the new DB + dM binaries seem to have white dwarf temperatures well above 30000 K which would place them in the so called DB-gap. Finding these DB white dwarfs in binaries may suggest that they have formed through a different evolutionary channel than the ones in which DA white dwarfs transform into DB white dwarfs due to convection in the upper layers.Comment: 4 pages, 2 figures, accepted for publication in A&A Letter

    Monitoring Grape Berry Moth (Paralobesia viteana: Lepidoptera) in Commercial Vineyards using a Host Plant Based Synthetic Lure

    Get PDF
    For some Lepidopteran pests, such as the grape berry moth Paralobesia viteana (Clemens), poor correlation between males captured in traps baited with sex pheromone and oviposition activities of female moths has called into question the value of pheromone-based monitoring for these species. As an alternative, we compared the capture of female and male grape berry moth in panel traps baited with synthetic host volatiles with captures of males in pheromone-baited wing traps over two growing seasons in two blocks of grapes in a commercial vineyard in central New York. Lures formulated in hexane to release either 7-component or 13-component host volatile blends captured significantly more male and female grape berry moth on panel traps compared with the numbers captured on panel traps with hexane-only lures. For both sexes over both years, the same or more moths were captured in panel traps along the forest edge compared with the vineyard edge early in the season but this pattern was reversed by mid-season. Male moths captured in pheromone-baited wing traps also displayed this temporal shift in location. There was a significant positive correlation between captured males and females on panel traps although not between females captured on panel traps and males captured in pheromone-baited traps for both years suggesting pheromone traps do not accurately reflect either female or male activity. Male moths captured in pheromone traps indicated a large peak early in each season corresponding to first flight followed by lower and variable numbers that did not clearly indicate second and third flights. Panel trap data, combining males and females, indicated three distinct flights, with some overlap between the second and third flights. Peak numbers of moths captured on panel traps matched well with predictions of a temperature-based phenology model, especially in 2008. Although effective, panel traps baited with synthetic host lures were time consuming to deploy and maintain and captured relatively few moths making them impractical, in the current design, for commercial purpose

    Lax pair and super-Yangian symmetry of the non-linear super-Schr\"odinger equation

    Get PDF
    We consider a version of the non-linear Schr\"odinger equation with M bosons and N fermions. We first solve the classical and quantum versions of this equation, using a super-Zamolodchikov-Faddeev (ZF) algebra. Then we prove that the hierarchy associated to this model admits a super-Yangian Y(gl(M|N)) symmetry. We exhibit the corresponding (classical and quantum) Lax pairs. Finally, we construct explicitly the super-Yangian generators, in terms of the canonical fields on the one hand, and in terms of the ZF algebra generators on the other hand. The latter construction uses the well-bred operators introduced recently.Comment: 32 pages, no figur

    Automatische mastitisdetectie uitkomst voor veel bedrijven

    Get PDF
    Automatische detectie van mastitis is een goed alternatief voor de observatie van de uiergezondheid tijdens het melken, vooral op bedrijven met een melkrobot of een grote veestapel. Dit is aangetoond bij een praktijkproef van de inzet van een detectiemodel voor mastitis als internettoepassing. Het onderzoek maakt deel uit van het project Precision Livestock Farmin

    Physiological and Molecular Characterization of Hydroxyphenylpyruvate Dioxygenase (HPPD)-inhibitor Resistance in Palmer Amaranth (Amaranthus palmeri S. Wats.)

    Get PDF
    Citation: Nakka, S., Godar, A. S., Wani, P. S., Thompson, C. R., Peterson, D. E., Roelofs, J., & Jugulam, M. (2017). Physiological and Molecular Characterization of Hydroxyphenylpyruvate Dioxygenase (HPPD)-inhibitor Resistance in Palmer Amaranth (Amaranthus palmeri S. Wats.). Frontiers in Plant Science, 8, 12. doi:10.3389/fpls.2017.00555Herbicides that inhibit hydroxyphenylpyruvate dioxygenase (HPPD) such as mesotrione are widely used to control a broad spectrum of weeds in agriculture. Amaranthus palmeri is an economically troublesome weed throughout the United States. The first case of evolution of resistance to HPPD-inhibiting herbicides in A. palmeri was documented in Kansas (KS) and later in Nebraska (NE). The objective of this study was to investigate the mechansim of HPPD-inhibitor (mesotrione) resistance in A. palmeri. Dose response analysis revealed that this population (KSR) was 10-18 times more resistant than their sensitive counterparts (MSS or KSS). Absorbtion and translocation analysis of [C-14] mesotrione suggested that these mechanisms were not involved in the resistance in A. palmeri. Importantly, mesotrione (>90%) was detoxified markedly faster in the resistant populations (KSR and NER), within 24 hours after treatment (HAT) compared to sensitive plants (MSS, KSS, or NER). However, at 48 HAT all populations metabolized the mesotrione, suggesting additional factors may contribute to this resistance. Further evaluation of mesotrione-resistant A. palmeri did not reveal any specific resistance-conferring mutations nor amplification of HPPD gene, the molecular target of mesotrione. However, the resistant populations showed 4- to 12-fold increase in HPPD gene expression. This increase in HPPD transcript levels was accompanied by increased HPPD protein expression. The significant aspects of this research include: the mesotrione resistance in A. palmeri is conferred primarily by rapid detoxification (non-target-site based) of mesotrione; additionally, increased HPPD gene expression (target-site based) also contributes to the resistance mechanism in the evolution of herbicide resistance in this naturally occurring weed species
    corecore