282 research outputs found
Some results and problems for anisotropic random walks on the plane
This is an expository paper on the asymptotic results concerning path
behaviour of the anisotropic random walk on the two-dimensional square lattice
Z^2. In recent years Mikl\'os and the authors of the present paper investigated
the properties of this random walk concerning strong approximations, local
times and range. We give a survey of these results together with some further
problems.Comment: 20 page
Informational and Neuromuscular Contributions to Anchoring in Rhythmic Wrist Cycling
Continuous rhythmic movements are often geared toward particular points in the movement cycle, as evidenced by a local reduction in trajectory variability. These so-called anchor points provide a window into motor control, since changes in the degree of anchoring may reveal how informational and/or neuromuscular properties are exploited in the organization of rhythmic movements. The present experiment examined the relative contributions of informational timing (metronome beeps) and neuromuscular (wrist postures) constraints on anchoring by systematically varying both factors at movement reversal points. To this end, participants cycled their right wrist in a flexed, neutral, or extended posture, either self-paced or synchronized to a metronome pacing peak flexion, peak extension, or both peak flexion and extension. The effects of these manipulations were assessed in terms of kinematics, auditory-motor coordination, and muscle activity. The degree of anchoring seen at the reversal points depended on the degree of compatibility of the prevailing configuration of neuromuscular and informational timing constraints, which had largely independent effects. We further observed systematic changes in muscular activity, which revealed distinct contributions of posture- and muscle-dependent neuromuscular properties to motor control. These findings indicate that the anchor-based discretization of the control of continuous rhythmic wrist movements is determined by both informational timing and neuromuscular constraints in a task-specific manner with subtle interactions between the two, and exemplify how movement variability may be exploited to gain such insights
MOTIFATOR: detection and characterization of regulatory motifs using prokaryote transcriptome data
Summary: Unraveling regulatory mechanisms (e.g. identification of motifs in cis-regulatory regions) remains a major challenge in the analysis of transcriptome experiments. Existing applications identify putative motifs from gene lists obtained at rather arbitrary cutoff and require additional manual processing steps. Our standalone application MOTIFATOR identifies the most optimal parameters for motif discovery and creates an interactive visualization of the results. Discovered putative motifs are functionally characterized, thereby providing valuable insight in the biological processes that could be controlled by the motif.
Achieving the Way for Automated Segmentation of Nuclei in Cancer Tissue Images through Morphology-Based Approach: a Quantitative Evaluation
In this paper we address the problem of nuclear segmentation in cancer tissue images, that is critical for specific protein activity quantification and for cancer diagnosis and therapy. We present a fully automated morphology-based technique able to perform accurate nuclear segmentations in images with heterogeneous staining and multiple tissue layers and we compare it with an alternate semi-automated method based on a well established segmentation approach, namely active contours. We discuss active contours’ limitations in the segmentation of immunohistochemical images and we demonstrate and motivate through extensive experiments the better accuracy of our fully automated approach compared to various active contours implementations
Target and (Astro-)WISE technologies - Data federations and its applications
After its first implementation in 2003 the Astro-WISE technology has been
rolled out in several European countries and is used for the production of the
KiDS survey data. In the multi-disciplinary Target initiative this technology,
nicknamed WISE technology, has been further applied to a large number of
projects. Here, we highlight the data handling of other astronomical
applications, such as VLT-MUSE and LOFAR, together with some non-astronomical
applications such as the medical projects Lifelines and GLIMPS, the MONK
handwritten text recognition system, and business applications, by amongst
others, the Target Holding. We describe some of the most important lessons
learned and describe the application of the data-centric WISE type of approach
to the Science Ground Segment of the Euclid satellite.Comment: 9 pages, 5 figures, Proceedngs IAU Symposium No 325 Astroinformatics
201
On the equivalence between hierarchical segmentations and ultrametric watersheds
We study hierarchical segmentation in the framework of edge-weighted graphs.
We define ultrametric watersheds as topological watersheds null on the minima.
We prove that there exists a bijection between the set of ultrametric
watersheds and the set of hierarchical segmentations. We end this paper by
showing how to use the proposed framework in practice in the example of
constrained connectivity; in particular it allows to compute such a hierarchy
following a classical watershed-based morphological scheme, which provides an
efficient algorithm to compute the whole hierarchy.Comment: 19 pages, double-colum
Visual and musculoskeletal underpinnings of anchoring in rhythmic visuo-motor tracking
Anchoring, that is, a local reduction in kinematic (i.e., spatio-temporal) variability, is commonly observed in cyclical movements, often at or around reversal points. Two kinds of underpinnings of anchoring have been identified—visual and musculoskeletal—yet their relative contributions and interrelations are largely unknown. We conducted an experiment to delineate the effects of visual and musculoskeletal factors on anchoring behavior in visuo-motor tracking. Thirteen participants (reduced to 12 in the analyses) tracked a sinusoidally moving visual target signal by making flexion–extension movements about the wrist, while both visual (i.e., gaze direction) and musculoskeletal (i.e., wrist posture) factors were manipulated in a fully crossed (3 × 3) design. Anchoring was affected by both factors in the absence of any significant interactions, implying that their contributions were independent. When gaze was directed to one of the target turning points, spatial endpoint variability at this point was reduced, but not temporal endpoint variability. With the wrist in a flexed posture, spatial and temporal endpoint variability were both smaller for the flexion endpoint than for the extension endpoint, while the converse was true for tracking with the wrist extended. Differential anchoring effects were absent for a neutral wrist posture and when gaze was fixated in between the two target turning points. Detailed analyses of the tracking trajectories in terms of velocity profiles and Hooke’s portraits showed that the tracking dynamics were affected more by wrist posture than by gaze direction. The discussion focuses on the processes underlying the observed independent effects of gaze direction and wrist posture on anchoring as well as their implications for the notion of anchoring as a generic feature of sensorimotor coordination
A Re-Appraisal of the Effect of Amplitude on the Stability of Interlimb Coordination Based on Tightened Normalization Procedures
The stability of rhythmic interlimb coordination is governed by the coupling between limb movements. While it is amply documented how coordinative performance depends on movement frequency, theoretical considerations and recent empirical findings suggest that interlimb coupling (and hence coordinative stability) is actually mediated more by movement amplitude. Here, we present the results of a reanalysis of the data of Post, Peper, and Beek (2000), which were collected in an experiment aimed at teasing apart the effects of frequency and amplitude on coordinative stability of both steady-state and perturbed in-phase and antiphase interlimb coordination. The dataset in question was selected because we found indications that the according results were prone to artifacts, which may have obscured the potential effects of amplitude on the post-perturbation stability of interlimb coordination. We therefore redid the same analysis based on movement signals that were normalized each half-cycle for variations in oscillation center and movement frequency. With this refined analysis we found that (1) stability of both steady-state and perturbed coordination indeed seemed to depend more on amplitude than on movement frequency per se, and that (2) whereas steady-state antiphase coordination became less stable with increasing frequency for prescribed amplitudes, in-phase coordination became more stable at higher frequencies. Such effects may have been obscured in previous studies due to (1) unnoticed changes in performed amplitudes, and/or (2) artifacts related to inappropriate data normalization. The results of the present reanalysis therefore give cause for reconsidering the relation between the frequency, amplitude, and stability of interlimb coordination
- …
