1,507 research outputs found
Spin pumping damping and magnetic proximity effect in Pd and Pt spin-sink layers
We investigated the spin pumping damping contributed by paramagnetic layers
(Pd, Pt) in both direct and indirect contact with ferromagnetic
NiFe films. We find a nearly linear dependence of the
interface-related Gilbert damping enhancement on the heavy-metal
spin-sink layer thicknesses t in direct-contact
NiFe/(Pd, Pt) junctions, whereas an exponential dependence is
observed when NiFe and (Pd, Pt) are separated by \unit[3]{nm} Cu.
We attribute the quasi-linear thickness dependence to the presence of induced
moments in Pt, Pd near the interface with NiFe, quantified using
X-ray magnetic circular dichroism (XMCD) measurements. Our results show that
the scattering of pure spin current is configuration-dependent in these systems
and cannot be described by a single characteristic length
Europium nitride: A novel diluted magnetic semiconductor
Europium nitride is semiconducting and contains non-magnetic \3+, but
sub-stoichiometric EuN has Eu in a mix of 2+ and 3+ charge states. We show that
at \2+ ~concentrations near 15-20% EuN is ferromagnetic with a Curie
temperature as high as 120 K. The \3+ ~polarization follows that of the \2+,
confirming that the ferromagnetism is intrinsic to the EuN which is thus a
novel diluted magnetic semiconductor. Transport measurements shed light on the
likely exchange mechanisms.Comment: 5 page
Structural, electronic, and magnetic characteristics of Np_2Co_(17)
A previously unknown neptunium-transition-metal binary compound Np_2Co_(17) has been synthesized and characterized by means of powder x-ray diffraction, ^(237)Np Mössbauer spectroscopy, superconducting-quantum-interference-device magnetometry, and x-ray magnetic circular dichroism (XMCD). The compound crystallizes in a Th_2Ni_(17)-type hexagonal structure with room-temperature lattice parameters α=8.3107(1) Å and c=8.1058(1) Å. Magnetization curves indicate the occurrence of ferromagnetic order below T_C>350 K. Mössbauer spectra suggest a Np^(3+) oxidation state and give an ordered moment of μ_(Np)=1.57(4) μ_B and μ_(Np)=1.63(4) μ_B for the Np atoms located, respectively, at the 2b and 2d crystallographic positions of the P6_3/mmc space group. Combining these values with a sum-rule analysis of the XMCD spectra measured at the neptunium M_(4,5) absorption edges, one obtains the spin and orbital contributions to the site-averaged Np moment [μ_S=−1.88(9) μ_B, μ_L=3.48(9) μ_B]. The ratio between the expectation value of the magnetic-dipole moment and the spin magnetic moment (m_(md)/μS=+1.36) is positive as predicted for localized 5f electrons and lies between the values calculated in intermediate-coupling (IC) and jj approximations. The expectation value of the angular part of the spin-orbit-interaction operator is in excellent agreement with the IC estimate. The ordered moment averaged over the four inequivalent Co sites, as obtained from the saturation value of the magnetization, is μ_(Co)≃1.6 μ_B. The experimental results are discussed against the predictions of first-principles electronic-structure calculations based on the spin-polarized local-spin-density approximation plus the Hubbard interaction
- …
